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Abstract— Learning from offline datasets poses scalability
challenges for robotics due to their limited availability. Fur-
thermore, current offline learning techniques in robotics either
lack the ability to translate effectively to real-time deployment
or fail to capture the inherent diversity within the datasets.
In this work, we propose a diffusion learning framework as a
unified policy capable of distilling multiple skills across a variety
of robotic platforms into a single architecture. We leverage dif-
fusion’s multimodal capabilities to learn from diverse datasets,
demonstrating that our single diffusion-based policy can learn
multiple locomotion gaits—such as trot, pronk, bound, and
pacing—across quadrupedal robots with varying morphologies
and physical parameters. The policy is conditioned on the
robot’s characteristics and desired gait commands. Moreover,
the policy generalizes across different terrains, successfully
handling multiple slopes in simualtion and real-world hardware
tests, with slopes varying between 13-16 degrees. Through
comprehensive experimentation, we illustrate the superiority of
our diffusion-based policy compared to reinforcement learning
and non-diffusion behavior cloning baselines. We validate the
robustness of our approach by deploying the policy on two
quadrupedal robots with significantly different morphologies:
the Unitree Gol, a commercially available 12kg robot, and the
Stoch 5, a 70kg in-house developed quadruped.

I. INTRODUCTION

Traditionally, learning from large-scale offline data
was not possible in robotics, primarily due to the lack
of methods for generating diverse and accurate data, as
well as the computational demands required to process
such data in a way that remains adaptable to real-time
deployment on hardware. However, such methods of scaling
offline data in conjuction with powerful architecture has
shown great promises in the realms of natural language
processing, seen by the rise of large language models in
recent years. Following suit, recent advances in robotics,
including improvements in the quality of simulation data
and the availability of large-scale collaborative teleoperation
datasets [34], along with increasingly powerful on-board
computational resources, have contributed to a growing
interest in the utilization of offline learning techniques for
controls [41], [12] and decision-making applications.

In contrast, online reinforcement learning (RL) techniques
[17], [45], [44], [S] have achieved significant success in
real-time control tasks. However, these methods are typically
specialized for particular tasks or robot morphologies on
which they have been trained. Adapting RL policies to
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new morphologies presents considerable challenges due to
variations in robot dynamics and actuator models, which
necessitate complex reward structures and extensive reward
tuning. Additionally, the development of new skills often
requires the design of task-specific reward functions, further
increasing the need for detailed reward engineering. As
a result, existing approaches have explored two distinct
strategies: morphology-aware methods [27], [4], [39], which
aim to generalize a single skill across multiple robots, and
multi-skill methods [36], [35], [23], which enable a single
robot to acquire multiple skills. Despite these advancements,
RL-based methods have yet to demonstrate a unified policy
capable of learning and executing multiple skills across
multiple robots simultaneously.

When it comes to demonstrating multiple skills across
different robots, most approaches focus on applying
imitation learning to large offline datasets, often generated
using teleoperated or handcrafted base controllers [15],
[11], [14]. A recent innovation in this area has explored
the use of powerful goal- and state-conditioned diffusion
architectures to clone behaviors from such datasets [7], [38].
However, these models often suffer from long inference
times, which limits their effectiveness. As a result, they
have primarily shown success in quasi-static environments,
such as manipulation tasks, where the environment remains
stable enough to accommodate the compute-heavy nature of
these models.

To address these challenges, we propose a unified,
lightweight conditional diffusion model capable of scaling
across multiple skills, diverse robot morphologies, and
varying slopes. Our approach focuses on quadrupedal
locomotion—a time-sensitive control task with minimal
passive stability. We collect simulation data from expert-
trained models, capturing a variety of gaits—trot, bound,
pronk, and pace—across robots with diverse morphologies
and on different slopes. Using this rich, multidimensional
dataset, we train a single diffusion model that learns a
unified policy, enabling zero-shot deployment for real-time
control on hardware across all three dimensions: multiple
gaits, robots, and terrain slopes.

The primary contributions of our paper include -

1) Multi-Robot: We propose a novel morphology-aware
controller that learns quadrupedal locomotion for
robots of diverse morphologies in a single unified

policy.



2) Multi-Skill Distillation: Using our novel framework,
we show that data generated from multiple policies or
streams can be distilled into a singular task-conditioned
diffusion, without compromising heavily on the per-
formance with respect to any task. Another emergent
advantage of our method is the ability to interpolate
across the learnt skills, as well as better skill transition.

3) Hardware: We validate our method through exten-
sive hardware testing on two quadrupeds with vastly
different morphologies. Our controller is deployed on
the lightweight Unitree Gol, weighing around 12.5
kg, and the much bulkier Stoch 5, which weighs
70 kg—over five times the mass of the Gol. We
deploy the controller at S0Hz without any hardware-
specific tuning. To the best of our knowledge, this
is one of the first works to demonstrate a diffusion-
based policy operating in real-time on quadrupeds with
such a significant difference in size and weight. We
showcase that our novel controller can successfully
climb slopes of varying magnitudes in simulation and
hardware. Our controller also inherits properties of the
expert policy, such as being robust over rough terrains,
random disturbances, and changing friction values.

We plan to release the code for our method as open-source
in the near future.

II. RELATED WORKS
A. Diffusion in Robotics

Recently, diffusion models [40] have gained prominence in
control tasks due to their multimodal capabilities. They have
demonstrated significant success in learning from offline
datasets and human demonstrations. For example, [19] and
[2] highlight the efficacy of diffusion models in planning and
offline tasks, respectively. In the realm of online reinforce-
ment learning, recent studies [3], [37], [24], [9] have explored
various techniques for fine-tuning and training diffusion
models through policy optimization methods. Specifically,
[3] interprets the diffusion process as a Markov Decision
Process (MDP) with a sparse reward at the end of the
denoising phase, while [37] addresses two MDPs—one for
diffusion and another for the environment. Despite these
advances, most of these approaches have been confined to
simulations and have not yet been applied to actual hardware.

Diffusion models can be conditioned on various inputs
to generate unique outputs, creating opportunities for inte-
grating multimodal states into robotic control tasks [7]. For
manipulation tasks, these models have been employed to
combine visual inputs with language commands [20], [13].
Hierarchical methods for skill chaining and planning have
also been developed [32], [31], [30], though these approaches
generally operate at a low action frequency of around 10Hz
due to the stable dynamics involved. In contrast, legged
locomotion tasks require high-frequency feedback control
due to their inherently unstable dynamics. [18] demonstrates
a real-time diffusion-based locomotion policy that showcases
multiple skills across quadruped robots by optimizing the

inference process of their transformer model. Our approach,
however, extends this by employing a single diffusion policy
to demonstrate multiple skills on morphologically diverse
robots and across various slopes, using only MLPs as the
backbone for real-time performance.

B. Learning-based Legged Locomotion

Recent studies in Deep Reinforcement Learning (DRL)
for quadruped locomotion [22], [33], [25], [1], [26], [10]
have garnered significant interest and have made substantial
progress in enabling locomotion over diverse terrains such
as slopes, uneven ground, stairs, etc. However, despite these
advances, most of these approaches are tailored to specific
robot morphologies, meaning these frameworks are designed
to train locomotion policies for only a single quadruped
morphology thereby limiting their generalizability to differ-
ent quadruped designs. Developing a single learning policy
for a range of morphologically diverse quadruped robots
presents a challenging problem due to variations in mass,
link lengths, dynamics, and actuator models, which result in
complex locomotion requirements. This challenge is further
compounded by the need for the policy to address mul-
tiple dimensions simultaneously: accommodating a variety
of morphologies, including very large quadrupeds; learning
versatile locomotion skills, such as executing different gaits;
and adapting to varying terrains like slopes. Each of these
dimensions adds complexity, making the development of
such a versatile policy exceptionally demanding.

Bohlinger et al. [4] developed a Multi-Task Reinforcement
Learning (MTRL) framework that enables a single policy
to control various legged robots, including quadrupeds, hu-
manoids, and hexapods. While this framework allows for
policy learning across different legged morphologies, its
hardware evaluations are mostly limited to flat terrain, such
as pavements, grass, and plastic turf. The hardware tests were
conducted on three small quadruped robots: Unitree Gol,
MAB Honey Badger, and MAB Silver Badger, while the
performance of the framework on larger quadrupeds, such
as the AnyMal-C, which has complex actuator dynamics,
remains untested in real-world scenarios.

In contrast, Zeren et al. [27] proposed the MorAL frame-
work, which facilitates locomotion across diverse terrains,
including stairs and slopes, for quadrupeds of varying mor-
phologies. This framework generates a range of robot mor-
phologies during simulation initialization to train general-
izable strategies. Although the paper claims to handle up
to 245% variations in size and mass, the hardware tests
have been confined to the randomization range used in
simulations. There is no demonstration of zero-shot transfer
or results for larger quadrupeds, such as a 70kg robot, which
exceeds their simulated range.

Both approaches face challenges in real-world validation
on larger robots, as sim-to-real transfer becomes harder with
increased mass and larger link dimensions. Additionally,
in both of these approaches, the generalist RL policy is
not tasked with “skill learning”, i.e. learning multiple gaits,
which is essential for versatile locomotion.
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Fig. 1: Offline Diffusion framework data collection, training and deployment pipeline

A promising approach for learning diverse skills is through
diffusion models, which have effectively demonstrated the
acquisition of various locomotion skills, such as jumping,
trotting, and bipedal walking, in quadruped robots [18]. This
success highlights their advantage over AMP and Motion
Imitation methods [43], [42], [23], [8], [6], [21]. However,
while diffusion-based policies have shown effectiveness in
skill learning, their ability to generalize across different
quadruped morphologies and terrains remains unexplored. To
address this, we propose MorphDLoco, a novel diffusion-
based methodology designed to handle a range of quadruped
morphologies, enabling skill learning through multiple gaits
and effective locomotion on slopes.

III. METHODOLOGY

In this work, we employ Denoising Diffusion Probabilistic
Models (DDPM) [16] to train a single policy that learns
the distribution of actions required for locomotion on both
flat and sloped surfaces across different robot morphologies
while utilizing various gaits. This section outlines our for-
mulation of the problem using diffusion models. We also
discuss our offline data collection process and the design
choices that enable our method to operate in real time.

A. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) have
proven effective in modeling multimodal data distributions.
In DDPM, the forward noising process progressively corrupts
the data by adding Gaussian noise. This process begins with
a data point sampled from the original distribution x;_; ~
q(z), and noise is added according to a variance schedule
{Bk € (0,1)}< . The noising process is defined as:

q(zp|lrr—1) = N(xk; /1 — Brak—1, Bl) (D

Here, x; represents the noisy data at step k, and N
denotes a Gaussian distribution with mean /1 — 8, x,_1 and
covariance [i1.

The generative process follows an iterative denoising
process similar to Langevin Dynamics. Starting from xj ~

N(0,1), the denoising process to get zx_; can be repre-
sented mathematically as follows:
1— oy

1
L—1 = T — €
S T T

where o, = 1 — B, dy, = Hle «; and o, = +/Bg. This
process continues iteratively for timesteps K to reduce noise
in the sample x; until the desired noise-free output x is
generated.
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B. Problem Formulation

In our application, the DDPM policy predicts target joint
angles (ap) to be applied to the quadruped, with respect to
the default initial joint positions. The goal is to predict the
appropriate joint angle actions by progressively denoising
the predictions through each step. We apply equation 1 to
add noise during the training process. The policy is condi-
tioned on the history of states, previous actions, commands,
and robot-specific parameters to predict eg(ar, Cinputs, k)
to sample the next denoised action ajp_; using eq 2 for
any given denoising step k. We train our policy using the
following objective function:

L = MSE(ek, €g(ak, Cinputs; k)) 3)

where €, and a; represent the added noise in the forward
diffusion process, and the denoised action at step k respec-
tively, and Cj,pyts represents the conditional inputs.

C. Conditional Inputs
We use the following robot data as conditional inputs:

1) State History: The state history includes the gravity
vector, DOF velocities, changes in DOF positions
from the initial state, and the last two actions,
spanning a history length of 4. We found that this
minimal set of robot states is sufficient for training
an efficient and lightweight DDPM policy. The state
history is processed through a Temporal Dynamics
Encoder, which produces a compact and informative
representation, fpis € RPmist, where Djiq = 64.



Robot Paramters | Unitree Gol | Stoch4 | Stoch5

Body Length (in m) 0.40 0.54 0.67
Body Width (in m) 0.13 0.20 0.26
Abduction Length (in m) 0.08 0.12 0.135
Thigh Length (in m) 0.23 0.30 0.35
Shank Length (in m) 0.24 0.35 0.35
Base Mass (in kg) 4.80 9.75 38.07
Abduction Mass (in kg) 0.51 0.94 2.61
Thigh Mass (in kg) 0.89 2.49 4.88
Shank Mass (in kg) 0.16 0.38 1.5

TABLE I: Description of robot parameters

2) Robot Parameters: To discriminate between different
robots, we condition our DDPM policy on the robot
width, length, link lengths, and link masses. These
parameters are further encoded to give f,., € RPros,
where D,.., = 16. The actual values of the parameters
for all the three robots can be found in Table I

3) Commands: We pass velocity commands (v, vy, w;)
and gait commands 0,4 to control the policy. We
follow [29] to represent the gait commands. The gait
commands are encoded into meaningful representation
fgait € RPsait where Dgait = 8.

D. Data Collection

In this section, we outline the methodology for collecting
the datasets used to train our diffusion model. The dataset
consists of conditional diffusion inputs and target joint ac-
tions, gathered using expert RL policies trained in simulation.
We leverage the NVIDIA IsaacGym [28] simulation engine
to collect data concurrently from 400 parallel robots, allow-
ing efficient large-scale data generation.

The data is collected from three morphologically distinct
quadrupeds: Unitree Gol, Stoch 4, and Stoch 5, with expert
RL policies trained to execute multiple quadrupedal gaits
[29]. We gather data across both flat ground and slopes,
splitting the terrain evenly. Each robot generates 200,000
samples across all gaits. To enhance the robustness of our
diffusion policy, we incorporate domain randomization tech-
niques during data collection. This includes varying ground
friction (0 to 1), joint friction (0.1 to 3), restitution (0 to
0.4), and applying external forces to simulate real-world
conditions. These variations help our model generalize and
adapt to diverse environments during real-world deployment.

During data collection, each robot is commanded with
a single velocity input—either forward velocity v,, lateral
velocity vy, or yaw rate w,. While testing, we aim to provide
all three velocity commands simultaneously and evaluate
whether the diffusion model can interpolate and handle
combined motion commands effectively.

E. Architecture

Our diffusion policy architecture consists of a 6-layer
MLP that predicts joint actions by conditioning on sev-
eral encoded inputs. First, the observation history (a 4-
step sequence) is processed by the Temporal Dynamics

Model and Encoder Details

Activation Function ELU
Temporal Dynamics Encoder GRU (hidden dims: 64)
Diffusion Policy 6-Layer MLP (256 hidden units/layer)

Gait Encoder 1-Layer MLP (Input dim: 3, Output dim: 8)
Robot Profile Encoder 1-Layer MLP (Input dim: 9, Output dim: 16)
Training Details
Learning rate le-3
Batch size 4096
Denoising timesteps 60

Training samples
Timer embeddings

600k (200k/robot)
Linear embeddings

TABLE II: Training and Hyperparameter Details

Encoder, a GRU-based module specifically designed to
capture time-dependent features from the robot’s sensory
inputs. Naively conditioning the diffusion model directly
on the raw observation history led to instability, where
the robot would stumble after taking a few steps, making
this encoder crucial for stable learning. Additionally, we
employ a Gait Encoder to process the command for different
locomotion gaits (trotting, pronking, bounding, and pacing),
and a Robot Profile Encoder to encode the unique physical
parameters of each robot, such as link lengths and mass.
The diffusion model is then conditioned on these encoded
representations—observation history, gait, and robot param-
eters—along with velocity commands, predicting denoised
joint angles for control. This approach allows the model
to generalize effectively across various gaits, different robot
morphologies, and multiple terrains like slopes. Full training
and hyperparameter details are provided in Table II.

IV. RESULTS

In this section, we first benchmark our method against
existing baselines. Following this, we conduct in-depth ex-
periments to evaluate and compare our policy across sev-
eral scenarios: Multi-Robot Experiments, and Multi-Skill
Learning. Additionally, we demonstrate the versatility of our
approach through out-of-distribution gait transitions. Lastly,
we explore zero-shot skill transfer to a robot morphology
and velocity interpolation across morphologies. We provide
videos of hardware results in the supplementary.

A. Robots and Hardware setup

We showcase the results on two robots (Gol and Stoch 5)
in the real world and three robots (Gol, Stoch 5 and Stoch 4)
in simulation. More details about these robots can be found
on in Table I. The low-level control and state estimation
runs on an on-board Intel NUC at 100 Hz, while the dif-
fusion policy runs on another separate on-board Intel NUC,
communicating with the main NUC over ROS2 channels at
50 Hz, receiving the required states and responding with
corresponding actions to be taken to be forwarded to the
low-level controller. The diffusion policy was optimized for
inference using just-in-time (JIT) compilation, and was able
to achieve real-time inference solely based on CPU compute
of Intel NUC.
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Fig. 2: Robots on which we have validated our policy. Unitree Gol
is a commercially available 12 kg robot made by Unitree. Stoch 4
and Stoch 5 are lab-built robots, with Stoch 4 weighing around 25
kg, and Stoch 5 exceeding that reaching up to 70 kg.

B. Baselines and Tasks

For our baselines, we compare against the source expert
policy, which in our case is the Walk These Ways policy [29].
Additionally, we benchmark our diffusion policy against
non-diffusion methods, specifically Behavior Cloning. This
baseline uses a similar architecture to our diffusion policy,
but with the loss function replaced by a reconstruction loss.

We evaluate our method on three different tasks:

1) Flat Ground Walking: We present velocity tracking
comparisons of our method against the baselines, track-
ing a target velocity of 0.5 m/s in the x-direction.
For simplicity, we focus on the trot gait in the main
paper, as the results observed for the trot gait are
representative of all gaits. Additional plots for other
gaits can be found in the supplementary material.

2) Slope walking: For this experiment, we show velocity
for all three robots on slopes of 15-degree inclination.

3) Gait transitions: We demonstrate our method’s capa-
bility to follow gait commands and transition between
different gaits.

We also show zero-shot skill transfer of learned skill to a
robot of new morphology as a downstream application of
our method. Further we observed that although our training
data only included single velocity commands for each robot,
our diffusion policy successfully learns to interpolate and
generalize across multiple velocity commands during testing.

C. Mutli Robot Experiments

Our method learns useful locomotion skills on different
morphology robots. To test the capabilities of our policy, we
compare its command tracking against baselines. Figure 3
present the comparative performance of our method against
the RL and Behavior Cloning baselines for both flat ground
and sloped environments. As shown, our method exhibits
strong velocity tracking capabilities across all three robots.
The RL baseline performs well on Gol, as it was specifically
trained for this robot. It performs reasonably on Stoch 4 due
to its morphological similarity to Gol, but fails completely
on Stoch 5, which is expected since RL policies struggle to
generalize to out-of-distribution scenarios. Admittedly, our
diffusion method does not outperform the RL baseline for
Gol and is, at best, on par with it. However, the strength

of our approach lies in its ability to maintain the same
level of proficiency across robots with significantly different
morphologies, using a single unified policy.

It is evident from Figure 3 that our method significantly
surpasses the behavior cloning baseline in performance.
Behavior cloning fails to capture the inherent dynamics of
each robot from the offline dataset. As a result, it fails catas-
trophically to follow velocity commands. This shortcoming
likely arises because the policy is trained solely using recon-
struction loss, which averages out the diverse morphological
behaviors, resulting in suboptimal performance. Moreover,
these experiments indicate that the behavior cloning baseline
is not receptive to the robot-specific conditional inputs. Our
conditional diffusion policy can learn morphologically aware
behaviors owing to its multimodal capacity and thus perform
better than Behaviour cloning in all scenarios.

D. Multi Skill Learning

We demonstrate that our method successfully follows gait
commands for trot, bound, pace, and pronk gaits by condi-
tioning on gait parameters. We first collect evenly distributed
data from each robot for each gait using robot-specific expert
policies to train the diffusion model. For evaluation, we
change the gait every 250 timesteps following the sequence:
bound, pronk, trot, and pace. Figure 4 shows the transition
between different gaits performed by our method on gol.
The model effectively learns a single policy that can execute
all these gaits. Notably, the dataset did not include any
skill transition data points, highlighting the capability of our
method to transition between different gaits, even without
explicit transition data during training.

E. Zero shot skill transfer and Velocity Interpolation

This section demonstrates a downstream use case of
our trained conditional diffusion policy. The goal of
this experiment is to show that our policy is capable of
transferring learned skills to a robot with a new morphology
in a zero-shot manner. We train the diffusion policy using
gait data from Gol and Stoch 5, while for Stoch 4, we
provide data for all gaits except trot. The trained policy
successfully learns the trot gait for Stoch 4. These results
demonstrate that conditioning on robot-specific parameters
can lead to a degree of generalization, even in behavior
cloning methods. Our method captures the dynamics of a
skill across different morphologies and is able to interpolate
that skill to new morphologies.

Moreover, we observe that our method can interpolate to
velocities not present in the training dataset. The policy
was trained with only one velocity command at a time.
However, during testing, we provide v,, vy, and w,,
simultaneously, each set to 0.5 m/s, to assess the policy’s
interpolation capabilities. Our method successfully learns to
interpolate these velocity commands. In contrast, Behavior
Cloning fails to effectively learn these interpolation skills.
RL baselines trained on Gol excel for Gol but perform
poorly on Stoch 4 and Stoch 5, highlighting their struggle
with velocity interpolation. More detailed results are present
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Fig. 3: Velocity tracking comparison MorphDLoco (Blue), RL Expert Policy trained on Gol (Red), Behaviour Cloning (Green) baselines.
MorphDLoco consistently tracks the desired velocity (Black) well for all morphologies while being at par with RL Expert Policy for Gol.
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Fig. 4: Foot contact sequence - black regions are periods of foot contact. We commanded the robot to change gaits amidst walking: bound,
pronk, trot and pace in that order respectively, represented by purple, green, red and blue regions to observe gait transitions. The transition
between gaits is smooth and quick, with the policy adjusting the contact phases within 1 gait cycle to adapt to the commanded velocity.

in the supplementary.

V. CONCLUSIONS

We present MorphDLoco, a unified Morphology-Aware
Diffusion policy designed to learn multiple locomotion skills
for quadruped robots with diverse morphologies from offline
datasets, achieving transfer to hardware. By leveraging the
multimodal capabilities of diffusion models, MorphDLoco
trains a single policy that effectively handles various skills
by conditioning on gait commands and robot-specific param-
eters. Our results demonstrate that MorphDLoco excels in
velocity tracking and gait transitions, even without transition
data in the training sets. Additionally, we highlight the
ability of MorphDLoco to transfer learned skills to new robot

morphologies, showcasing its adaptability and versatility.

In future work, MorphDLoco can be extended to accom-
modate a broader range of morphologies and more extreme
terrains by incorporating vision inputs into the diffusion
policy. Additionally, a deeper investigation into the zero-
shot skill transfer is warranted, focusing on how data and
architecture impact the ability to transfer skills to new robot
morphologies. MorphDLoco offers a scalable approach to
learning from offline data, potentially paving the way for
developing robot-agnostic generalist locomotion policies.
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