
Abstract 

 
Quadruped possess inherent advantages for locomotion, such as improved stability, robustness 

and adaptability, making them the ultimate choice in traversing challenging terrains and dynamic 

environments compared to other robotic forms. Developing controllers that effectively exploit 

quadrupeds’ inherent advantages is a challenging task. Recent advances in employing Deep 

Reinforcement Learning (DRL) for quadruped locomotion have proven to be remarkably robust 

and promising. In this report, we present an end-to-end RL framework enabling a quadruped 

robot to achieve stable gait navigation on complex terrains. Trained initially on flat surfaces with 

fractal noise on simulation, our approach relies on proprioceptive inputs, eliminating the need 

for cameras or exteroception sensors. The framework exhibits robustness against external 

pushes and friction changes, promising potential applications in search and rescue, exploration, 

and in the defense sector. While focusing on flat surfaces, our future plans involve extending 

training to diverse terrains.  

 

Prior Works 
 

Recent developments have prominently employed end-to-end Deep Learning (DL) techniques, 

characteristic of learning-based approaches, to revolutionize quadruped locomotion across 

challenging and uneven terrains. These advancements have demonstrated notable robustness 

and adaptability, attesting to the efficacy of DL-based methodologies. By adopting end-to-end DL 

frameworks, which use sensory inputs to predict motor commands or forecast trajectory 

parameters, researchers tap into the stability and agility of quadrupeds, enabling them to 

navigate complex terrains more effectively. This shift avoids extensive manual parameter tuning 

which are needed in the case of conventional controllers for quadruped locomotion.  

 

Some of the prominent works in quadrupedal locomotion using proprioception inputs on uneven 

terrains will be discussed in detail in this section. 

 

 

 

 

 

 

 

 



1. DreamWaQ: Learning Robust Quadrupedal Locomotion With Implicit 

Terrain Imagination via Deep Reinforcement Learning 

In this paper, the authors propose a framework that trains a robust locomotion policy for 

quadruped robots with only proprioception inputs using Deep RL algorithm. The contributions of 

this paper, as stated by the authors are threefold: 

1)  A novel locomotion learning framework via an asymmetric actor-critic architecture is 

proposed to implicitly imagine terrain properties using only proprioception. 

2)  A context-aided estimator network is proposed to estimate body state and 

environmental context jointly. Together with the policy, the proposed method 

outperforms existing learning-based methods. 

 3)  A robustness and durability evaluation of the learned policy in the real world 

conducted through walking in diverse outdoor environments. 

  

 

      Fig. 1 

 

The core concept underlying this method revolves around learning a good representation of the 

state which then serves as the foundation for predicting the joint angles directly from 

proprioceptive inputs. Fig. 1, shows the overview of DreamWAQ learning framework. Recent 

works have leveraged the teacher-student training paradigm. The teacher network deployed in 

simulation is presented with the full state inputs which includes privileged extrinsics information 

such as height map of terrain, friction coefficient, terrain normal, etc. The trained teacher policy 

then serves as the expert policy to train the student network to be deployed in real world 



hardware which has access to only the observation/partial state inputs. However, as stated in 

the paper, Behaviour Cloning has certain limitations because the student policy learns from the 

good action supervision of the teacher policy and might be unable to learn the failure states 

encountered by the teacher policy in the early stages of learning. This serves as a motivation for 

the authors to propose a single learning framework having asymmetric actor-critic architecture 

for learning robust locomotion behavior on uneven terrains. 

 

Terminologies 

 - temporal observation at time t over the past H measurements 

- observation at time t (n x 1 vector) 

 -  privileged observation 

 Zt - latent representation of world state 

 Vt - body linear velocity estimated by CENet 

 

Policy Network 

The observations to the policy network are  

1. Ot 

2.  Zt 

3.  Vt 

Zt and Vt are estimated by the Context-Aided Estimator Network while Ot is obtained from joint 

encoders and IMU. Since the policy network is provided only with the partial observations, it 

ensures seamless transition to hardware implementation, thus bypassing the usual method of 

training a student network architecture.  

 

Value Network 



The value network receives the full state of the world, which includes partial observation Ot, 

body velocity Vt, disturbance force dt and height map scan ht and is trained to output a single 

value that represents the value of the state.  

 

Action Space 

The action space is a 12 x 1 vector representing the target joint angles of the robot with respect 

to the robot’s initial stand still pose.  

                                                          

 

Reward Function 

 

      Fig. 2 

Context - Aided Estimator Network 



 

      Fig. 3 

 

The context-aided Estimator Network is the centerpiece of this paper. In a higher level, CENet 

predicts a context vector Zt, that intends to represent the terrain properties, and the body linear 

velocity Vt, which in turn helps to get a better understanding of the proprioceptive inputs. The 

latent vector Zt, is used to estimate Vt as well as to predict Ot+1. CENet architecture can be 

inferred from Fig. 3 which depicts an auto-encoder architecture. The authors use a β- variational 

auto-encoder (β-VAE) as the auto- encoder architecture. CENet is optimized using a hybrid loss 

function, defined as follows: 

                                                         

where Lest and LVAE are the body velocity estimation and VAE loss, respectively. The VAE network 

is trained with the standard B-VAE loss, which consists of reconstruction and latent losses. The 

authors employed MSE for the reconstruction loss and Kullback-Leibler (KL) divergence  as the 

latent loss. The VAE loss is formulated as: 

   

where Ot+1 is the reconstructed next observation,   is the posterior distribution of the 

at given  is the context's prior distribution parameterized by a Gaussian distribution. 

 

2. Minimizing Energy Consumption Leads to the Emergence of Gaits in 

Legged Robots 



In this paper, the authors show that learning to minimize energy consumption plays a key role in 

the emergence of natural locomotion gaits at different speeds in real quadruped robots. The 

same approach leads to unstructured gaits in rough terrains which is consistent with the findings 

in animal motor control. Locomotion consumes a significant fraction of an animal’s metabolic 

energy, suggesting that development of different gaits such as walk, trot, gallop, etc. are energy 

efficient at certain range of speeds. It also points out the fact that animals transition between 

different gaits at different speeds in order to minimize their energy consumption. In this work, 

the authors design an end-to-end learning framework to show how energy minimization leads to 

the emergence of structured locomotion gait patterns in flat terrains as well as unstructured gaits 

in complex terrains at different commanded speeds. This work leverages the use of the teacher-

student training paradigm. The teacher network is provided with proprioceptive inputs along 

with privileged extrinsics information such as terrain height, terrain normal, gravity vector, etc at 

every time step and is trained in simulation. The student network has access to only the current 

proprioceptive inputs and history of proprioceptive inputs and predicted action outputs. The goal 

of the student policy is to mimic the behavior of the teacher policy. More importantly, the 

student policy must be able to infer the privileged information with the history of proprioceptive 

inputs and actions. The authors capitalize on their prior work, "RMA: Rapid Motor Adaptation for 

Legged Robots," to facilitate the adaptation of the policy learned in simulation onto physical 

hardware. This process is executed through the implementation of the student-teacher 

framework. 

The main contributions of this paper, as stated by the authors include: 

• Show that minimizing energy consumption plays a key role in the emergence of natural loco- 

motion patterns in both flat as well as complex terrains at different speeds without relying on 

demonstrations or predefined motion heuristics. 

• Show that the emergent gaits at different target speeds correspond to conventional animals in 

the similar Froude number range (sheep/horse) without any sort of pre-programming. 

• Present a distillation-based learning pipeline to obtain velocity-conditioned policy that displays 

smooth gait transition as the target speed is changed. 

• Demonstrate the emergent behaviors, robustness analysis, and gait patterns in simulation as 

well as a real-world budget quadruped robot. 

 



 

               Fig. 4 

 

State Space 

The network architectures of the policy network and the value network are symmetric. The state 

is 30 dimensional containing the joint positions (12 values), joint velocities (12 values), roll and 

pitch of the torso and binary foot contact indicators (4 values). The environment information as 

depicted in Fig. 4 includes center of mass position and the payload (3 dimensions), motor 

strength (12 dimensions), friction (1 dimension), linear speed in x direction vx (1 dimension), 

linear speed in y direction vy (1 dimension) and yaw speed ωyaw (1 dimension), making it a 19-

dim vector.  

 



Action Space 

The action space is 12 dimensional corresponding to the target joint position for the 12 robot 

joints. The predicted joint angles are with respect to the robot’s initial stand-still position.  

 

 

Reward Function 

 

The total reward is the summation of three reward terms, namely, forward reward, energy 

reward and survival reward. The forward reward term rewards the agent for walking straight at 

the specified speed, energy reward term penalizes energy consumption and the survival reward 

term is the survival bonus.  

 

 

The authors use the A1 URDF  to simulate the A1 robot in the RaiSim simulator. They  generate 

complex terrains using the inbuilt fractal terrain generator for flat and uneven surfaces. They 

claim that tra the policy on a completely flat surface results in unnatural gaits and leads to lesser 

foot clearance from the ground. Hence, they train the policies on simple fractal terrains with 

varying frequency of terrain heights instead of perfectly flat terrain. The policies are tested at 3 

different target speeds, namely, 0.375 m/s, 0.9 m/s and 1.5 m/s. Walk gait is observed at 0.375 

m/s, trot gait emerges at 0.9 m/s and gallop gait develops at 1.5 m/s.  

 

 

 

Our Approach 

 



Following the footsteps of recent end-to-end DL frameworks for quadruped locomotion on 

uneven terrains, our work builds on the idea of using proprioception to estimate target joint 

angles. For our training, we employed the Proximal Policy Optimization (PPO) algorithm. We put 

our policies to the test in the PyBullet simulation environment and apply them to navigate a flat 

surface with fractals. While we're primarily focused on simulation testing at the moment, our 

ultimate goal is to take these policies and apply them to our real-world robot. 

To guide our learning process, we use a fixed curriculum strategy to adjust reward coefficients, 

manage responses to external forces, and handle friction changes. We're also planning to explore 

an adaptive curriculum approach in the future. Currently, our terrain model revolves around a 

flat fractal surface, while our robot policies are shaped by a fixed curriculum. This decision comes 

from a mix of careful tuning and methodical experimentation, leading to a well-performing 

control strategy. 

Our in-depth policy evaluation revolves around a set speed of 0.9 m/s, with the robot's 

movement confined to the x-direction. This approach results in a robust trot gait that can handle 

varying friction conditions and unexpected pushes even beyond what it was trained on. Looking 

ahead, we're aiming to expand our capabilities by introducing direction tracking in our future 

work. 

 

State Space 

Our observation space assumes a vector size of 128 x 1. This space is categorized into three 

distinct categories: history (timestep t-1), proprioceptive inputs (timestep t), and extrinsic 

information. 

In the history category, it encompasses joint action history, joint state history, and joint velocities. 

The proprioception input at time t includes present joint states, present joint velocities, base 

orientation, base velocities, as well as the desired direction and turning direction. 

Lastly, the extrinsic category entails various factors such as contact states, terrain height, terrain 

normal, friction coefficient, external forces, and contact forces. 

 

Action Space 



The action space is 12 dimensional corresponding to the target joint position for the 12 robot 

joints. The predicted joint angles are with respect to the robot’s initial stand-still position.  

 

 

Reward Function 

We adopt the reward function employed by Rapid Motor Adaptation (RMA), which is formulated 

as follows: 

 

 

Termination Condition 

We terminate the episode if the episode completes 2000 steps, body roll exceeds 0.4 radians, 

body pitch exceeds 0.2 radians or body height drops below 0.327m. 

 

 

 

Curriculum 



We've implemented a fixed curriculum strategy for adjusting reward coefficients, external force 

magnitudes (for force test), and friction coefficient values (for friction variation test). This 

strategy is a result of thorough experimentation and follows a systematic approach. 

At the outset, we set reward coefficients to very low values and assign maximum limits to each 

coefficient. Every 8 million timesteps, these coefficients gradually double until they reach their 

predetermined maximum limits. This strategy, honed through experimentation, ensures a 

controlled and steady training progression. 

To test the robustness of our policy, we carry out force tests and change friction coefficients and 

observe the behavior of our policy. We apply random external forces along all 3 axes. We start 

with tiny magnitudes ranging from -5N to +5N along the x, y, and z axes. Throughout training, 

these magnitudes increase incrementally until they hit a maximum magnitude of 80N. Similarly, 

the friction coefficient undergoes a similar treatment. We begin with a steady coefficient of 0.6 

and as training advances, the range of friction values widens. For example, in the initial 10 to 20 

million timesteps, it varies between 0.55 and 0.65. Later, at around 50 million timesteps, this 

range expands further. 

Notably, all our policy evaluations are performed on our custom quadrupedal model, "Stoch3," 

which is a medium-sized quadruped. The integration of direction tracking capabilities is reserved 

for our future work. 

 

 

 

 

 

 

 

 

 

Learnings 



> PyBullet Simulation 

Here are few important details that I worked out while using the PyBullet simulator for RL 

training: 

a. The frequency of applying actions to the motors is 20 Hz. This appears as a stable value 

while working with PyBullet simulation. 

b. Certain elements inside the robot’s URDF file contain references to their mesh files. To 

load the URDF file along with the meshes use:  

p.setAdditionalSearchPath(PATH_TO_MESH_FILES) 

c. Loading the URDF file requires specifying the base position of the robot on the terrain. 

Reset the base height of the robot to a suitable value upon running GUI making sure that 

the robot is as close to the ground as possible. This is particularly important because, upon 

reset and while training, the robot makes joint motions immediately after the step 

function is called. If the robot is loaded at a height much above the ground surface, it 

starts to make the movements in mid-air leading to producing noisy data and unstable 

motions. Perform empty steps inside the reset function for suitable timesteps until the 

robot hits the ground surface and is stabilized.  

d. The robot’s feet getting stuck in the ground is a common problem faced in the PyBullet 

simulator. Hence, instantiate the robot’s initial height such that it is above the ground 

surface terrain 

e. When the quadruped’s URDF file is loaded, the robot is always initialized at a full vertical 

position ( at maximum height). Training with this configuration of full height with a single 

training environment does not lead to realistic gaits. Initialize the robot with an initial 

stance position. 

f. For motor control, we used ‘POSITION_CONTROL’ mode listed in the 

‘setJointMotorControl2’ method. We found that using a positionGain value of 0.5 was 

most effective while training. It is based on careful experimentation with various gains. 

> Development of Environment script 



In this section I will be describing the experiments I carried out while creating the    environment 

script for RL training: 

Initially we adopted an Incremental Strategy to predict target joint positions. In the papers listed 

in the ‘Prior Works’ section, the authors predict joint angles with respect to the robot’s initial 

stand-still position and can be described as: 

 

In our strategy,  

   Joint angle (t) = Joint angle (t-1) + at 

   Joint angle (t=0) = Theta (stand) 

 

However, we found that training with this strategy does not lead to development of any gait 

motion and cannot be realized through hardware.  

* In some of our experiments, we trained our policies on a completely flat surface with no fractal 

variations. This led to the robot developing unrealistic gaits with very less foot clearance from 

the ground. This especially becomes a problem if this policy is transferred to hardware because 

some studies suggest that the robot usually sinks its base height in the real world, much more at 

higher speeds. 

** In our initial experimentations, we used different reward function terms and their coefficients 

for training. The total reward term was the summation of individual reward terms multiplied with 

their respective reward coefficients. We did not adopt any curriculum strategy at that time. 

Therefore, deciding a good value for the reward/penalty coefficient terms was a harder problem 

and the robot was unable to move forward and typically collapsed to the ground as training 

progressed. This is explained by the fact that the robot abandons its task or chooses an early 

termination when the task reward is overwhelmed by penalties from the auxiliary objectives such 

as energy minimization term, action rate term, z velocity term, etc. Therefore, we adopted a 

curriculum strategy for updating the reward/penalty coefficient terms which is explained in the 

‘Curriculum’ section of ‘Our Approach’.  

*** We used StableBaselines3 as our RL Library. We found that normalization of observations 

and rewards is very essential during training of the policy. StableBaselines performs dynamic 



normalization of rewards and observations. Normalization is particularly important for several 

reasons such as for stability of learning, gradient descent update (not normalizing rewards can 

lead to very large or very small gradient updates), robustness, exploration-exploitation trade-off, 

etc. 

 

 


