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Abstract: Recent advancements in large-scale offline training have demonstrated
the potential of generalist policy learning for complex robotic tasks. However,
applying these principles to legged locomotion remains a challenge due to contin-
uous dynamics and the need for real-time adaptation across diverse terrains and
robot morphologies. In this work, we propose GRoQ-LoCO, a scalable, attention-
based framework that learns a single generalist locomotion policy across multiple
quadruped robots and terrains, relying solely on offline datasets. Our approach
leverages expert demonstrations from two distinct locomotion behaviors - stair
traversal (non-periodic gaits) and flat terrain traversal (periodic gaits) - collected
across multiple quadruped robots, to train a generalist model that enables behav-
ior fusion. Crucially, our framework operates solely on proprioceptive data from
all robots without incorporating any robot-specific encodings. The policy is di-
rectly deployable on an Intel i7 nuc, producing low-latency control outputs with-
out any test-time optimization. Our extensive experiments demonstrate zero-shot
transfer across highly diverse quadruped robots and terrains, including hardware
deployment on the Unitree Go1, a commercially available 12kg robot. Notably,
we evaluate challenging cross-robot training setups where different locomotion
skills are unevenly distributed across robots, yet observe successful transfer of
both flat walking and stair traversal behaviors to all robots at test time. We also
show preliminary walking on Stoch 5, a 70kg quadruped, on flat and outdoor ter-
rains without requiring any fine tuning. These results demonstrate the potential
of offline, data-driven learning to generalize locomotion across diverse quadruped
morphologies and behaviors.

Keywords: Behavior cloning, Quadrupeds, Generalization, Zero-shot-transfer,
Offline dataset

1 Introduction

Generalization is a central challenge in legged locomotion control. Robust controllers must not only
produce stable and efficient motions but also adapt to new terrains, disturbances, and robot designs
without the need for retraining. Achieving such generalization would enable legged robots to move
out of controlled labs and operate reliably in the real world.

In robotic manipulation, large-scale offline learning has enabled this kind of generalization. Mod-
els like RT-1 and RT-2 [1, 2], and efforts like Open X-Embodiment [3] have demonstrated how
diverse, pre-collected datasets can be used to train generalist policies capable of solving hundreds
of tasks across different robotic armswithout online interaction. These methods rely on multi-task
imitation learning, foundation models, and scalable architectures that unify diverse behaviors across
embodiments [3, 4].
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Figure 1: Frames of Go1 robot traversing 15cm stairs. The policy showed zero shot transfer to Go1
for flat terrains and staircases.

Bringing these offline learning principles to legged locomotion, however, remains underexplored.
Locomotion differs fundamentally from manipulation: it requires continuous control, real-time
adaptation to dynamic environments, and often lacks clearly segmented tasks or episodic resets.
Still, the benefits of offline learningscalability, safety, and reusabilitymake it a compelling direction
for legged robotics, where online exploration is risky and expensive.

Some early efforts have begun applying offline learning to locomotion [5, 6, 7, 8]. DiffuseLoco
[6] showed that diffusion models trained on demonstration data can learn diverse gait patterns and
enable zero-shot sim-to-real transfer. However, these were confined to a single robot morphol-
ogy, and the scope of behaviors was limited. Other sequence modeling approaches like Decision
Transformers [4, 9, 10] have shown promise in manipulation but have not been widely adopted for
locomotionespecially in multi-embodiment settings.

In contrast, deep reinforcement learning (RL) has been the dominant paradigm for learning legged
locomotion policies. It has enabled agile behaviors such as trotting, jumping, and terrain traver-
sal [11, 12, 13, 14, 15, 16, 17]. However, RL methods typically require large-scale online inter-
action, task-specific reward engineering, and carefully tuned simulation environments. As a result,
they often produce specialized policies that generalize poorly to new robot morphologies or unseen
environments without extensive fine-tuning.

Several RL-based approaches have tried to address this by explicitly modeling morphology varia-
tion[18, 19]. GenLoco [18] introduced morphology randomization during RL training, enabling a
single policy to generalize across different quadrupeds such as A1, Mini Cheetah, and Sirius but
only for velocity tracking on flat terrain. MorAL [20] added an adaptive module to infer robot dy-
namics implicitly, improving generalization, but still relied on online RL and lacked the ability to
capture multiple distinct locomotion behaviors within a single model.

We introduce GRoQ-LoCO, a scalable offline learning framework that unifies locomotion control
across different terrains and robot designs. Our core insight is that dataset diversity both in robot
morphologies and locomotion behaviors is essential for generalization. GRoQ-LoCO is trained on
expert demonstrations of periodic gaits (flat terrain) and non-periodic traversal (stairs) collected
from multiple quadruped robots. It operates directly on proprioceptive inputs, without any mor-
phology encoding or post-training optimization. GRoQ-LoCO demonstrates strong generalization
across both behaviors and embodiments.

The key contributions of our work include:

• A Generalist Locomotion Controller: We develop a single policy that controls multiple
distinct quadrupedal robots without requiring robot-specific information.

• Offline Multi-Behavior Learning: We demonstrate that purely offline training on diverse
motion data produces a policy with periodic gaits and multi-terrain traversibility.

• Zero-Shot Transfer and Robustness: Our framework achieves strong zero-shot transfer
across diverse quadruped robots and terrains, including hardware deployment on commer-
cial platforms like the Unitree Go1 (see Fig. 1) and the Stoch 5, without requiring fine-
tuning.
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Figure 2: Offline data generation pipeline used in GROQLoco, illustrating trajectory collection
from expert RL policies on diverse terrains and robot morphologies.

Figure 3: Model architecture of GRoQ-LoCO, showing the sequential processing pipeline with
observation encoding, causal attention, GRU-based temporal modeling, and MLP action prediction.

2 Methodology

In this section, we present our data collection strategy, the architecture of the proposed behavior
cloning policy, the adaptive loss formulation, and the training procedure. Our approach enables
a single policy to learn different locomotion behaviors, namely, stable cyclic gaits on flat terrain
and stair-climbing on rough terrain, across a diverse set of quadruped robots. We also outline the
evaluation of zero-shot generalization to new robots unseen during training.

2.1 Data Collection and Expert Demonstrations

We collect expert demonstrations in simulation on select quadruped platforms, including Unitree
B2, Go1, Aliengo, and Stoch3 (Refer Fig. 2). Additional platforms such as Unitree B1, X30, Lite3
and Stoch5 are included primarily for evaluating zero-shot generalization and cross-morphology
transfer. Two specialized locomotion controllers are used to generate expert trajectories:

3



• Flat-Ground Controller: A periodic gait controller designed for stable and efficient loco-
motion on flat terrain.

• Rough-Terrain Controller: A non-periodic controller tailored for stair climbing and
traversal of uneven terrain.

Each expert trajectory τ consists of a sequence of observations {o0, o1, . . . , oT } and corresponding
expert actions {a0, a1, . . . , aT }, where each observation ot includes:

ot =
[
qt, q̇t, at−1, at−2, gt, ωt, v

cmd
t

]T
(1)

Here, qt denotes joint positions, q̇t joint velocities, at−1, at−2 are previous actions, gt the gravity-
aligned vector, ωt the angular velocity, and vcmd

t the commanded linear and angular velocities
(vx, vy, ωz). No robot-specific identifiers are used; policies are trained purely from proprioceptive
and command data to encourage generalization across robots.

2.2 Policy Architecture

Our behavior cloning policy is composed of four principal modules: an observation encoder, an
attention-enhanced recurrent core, a secondary attention module over the recurrent history, and a
final multi-layer perceptron (MLP) for action prediction (Fig. 3).

Observation Encoder: At each timestep t, the observation ot ∈ Rdobs is embedded into a latent
space via:

et = LayerNorm(ELU(Weot + be)),

where We,be are learnable parameters.

Positional Embeddings To inject temporal ordering information without assuming a fixed history
size, we employ fixed sinusoidal positional embeddings:

PE(t, 2i) = sin

(
t

100002i/demb

)
, PE(t, 2i+ 1) = cos

(
t

100002i/demb

)
These embeddings are added to observation and GRU histories before attention operations.

Attention over Observation History: The encoded observations {et−k, . . . , et} are stacked with
positional encoding and processed by a multi-head attention layer:

ht
attn1 = MHAattn1 ([et−k + PE, . . . , et + PE])

where MHA denotes multi-head self-attention. The most recent k outputs are aggregated.

GRU Memory: The encoded observation et is concatenated with the attended context hattn1
t and

passed into a GRU:
gt,h

GRU
t = GRU([et;h

attn1
t ],hGRU

t−1 ).

Attention over GRU History: The GRU outputs over time {gt−k, . . . ,gt} are again stacked, posi-
tional embeddings added, and processed through a second multi-head attention module:

hattn2
t = MHA ([gt−k + PE, . . . ,gt + PE])

Action Head: The final action is computed by feeding the concatenation of et, gt, and hattn2
t into

an MLP:
at = MLP([et;gt;h

attn2
t ]).

2.3 Adaptive Loss for Behavior Cloning

An adaptive loss is employed instead of a standard MSE. Given the predicted action ât and expert
action at, the loss is defined as:

Ladaptive =
1

T

T∑
t=1

(
exp(− log σ) · δ2 log

(
1 +

(
ât − at

δ

)2
)

+ log σ

)
,
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where σ is a learnable parameter per action dimension, and δ is a fixed scaling hyperparameter
(e.g., δ = 0.5). T denotes the number of timesteps within each truncated sequence (e.g., T = 20
during training with truncated BPTT). This loss behaves like a Huber loss with adaptive weighting,
allowing important joints to have higher influence during training.

Training is performed using batches of size 400, with truncated BPTT over recurrent states. Hid-
den states are detached periodically to prevent backpropagation through arbitrarily long sequences.
Additional details are present in Appendix C.

2.4 Training Setup and Details

Let D = {τi}Mi=1 denote a dataset of M expert trajectories, where

τi = {(oi,1,ai,1), . . . , (oi,Ni
,ai,Ni

)}

and Ni is the length of episode i. Define Nmax = maxi Ni. Each τi is padded to length Nmax with
dummy zero vectors and a mask mi,t ∈ {0, 1} marking valid timesteps.

Training runs for E epochs. In our setup, one epoch corresponds to sampling a single batch (not a
full pass over D). At epoch e, we sample a batch B and extract the padded sequence:(

o
(B)
t ,a

(B)
t ,m

(B)
t

)
, t = 1, . . . , Nmax

We process each batch sequentially over time, passing o
(B)
t and previous hidden state h

(B)
t−1 to the

model, which outputs predicted action and updated hidden state:

â
(B)
t ,h

(B)
t = Model

(
o
(B)
t ,h

(B)
t−1

)
The loss is computed over valid steps:

LB =
1∑

t m
(B)
t

Nmax∑
t=1

m
(B)
t ℓadaptive

(
â
(B)
t ,a

(B)
t

)
Every Tu steps (e.g., Tu = 20), we compute gradients:

∇θ

(
1

b

∑
B

LB

)
(where b is the batch size), update parameters using Adam, and truncate BPTT by detaching hidden
states:

h
(b)
t ← stop grad

(
h
(b)
t

)
∀ t mod Tu = 0

To stabilize training, we apply a warmup of Ew = 50 epochs where, post-update, all hidden states
are reset:

h
(b)
t ← 0 if e ≤ Ew

For e > Ew, hidden states are preserved, enabling continuity across (padded) episodes. This bal-
ances TBPTT efficiency with long-horizon memory retention.

3 Experiments

We conduct a series of experiments to evaluate how multi-robot and multi-terrain training enables
generalist locomotion policies that scale across diverse quadruped embodiments and terrain types.
Our setup includes cross-robot training configurations with locomotion skills unevenly distributed
across robots. We first study zero-shot transfer and behavior fusion in stair-climbing scenarios,
using gait visualizations and step-wise completion tables to capture detailed behavior. We then
examine generalization to entirely novel terrains. Additional analyses, including comparisons with
and without explicit robot encodings under identical multi-robot settings, will be provided in the
supplementary material.
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Setting Robot Mode 13 cm 17 cm 21 cm (OOD) 25 cm (OOD) 29 cm (OOD)
Go1 ZS ✓ ✓ ✗ ✗ ✗

Stoch5 ZS ✓ ✓ ✓ ✓ ✓
1 B1 ZS ✓ ✓ ✓ ✓ ✓

B2 FO ✓ ✓ ✓ ✓ ✓
Aliengo SO ✓ ✓ ✓ ✗ ✗
Stoch3 SO ✓ ✓ ✓ ✓ ✓

Go1 FO ✓ ✓ ✗ ✗ ✗
Stoch5 ZS ✓ ✓ ✓ ✗ ✗

2 B1 ZS ✓ ✓ ✓ ✓ ✓
B2 SO ✓ ✓ ✓ ✓ ✓

Aliengo ZS ✓ ✓ ✗ ✗ ✗
Stoch3 FO ✓ ✓ ✓ ✓ ✗

Go1 FO ✓ ✓ ✗ ✗ ✗
Stoch5 ZS ✓ ✓ ✓ ✓ ✓

3 B1 ZS ✓ ✓ ✓ ✓ ✓
B2 ZS ✓ ✓ ✓ ✓ ✓

Aliengo SO ✓ ✓ ✓ ✗ ✗
Stoch3 SO ✓ ✓ ✓ ✓ ✓

Go1 SO ✓ ✓ ✗ ✗ ✗
Stoch5 ZS ✓ ✓ ✗ ✗ ✗

4 B1 ZS ✓ ✓ ✗ ✗ ✗
B2 ZS ✓ ✗ ✗ ✗ ✗

Aliengo ZS ✓ ✓ ✗ ✗ ✗
Stoch3 FO ✓ ✓ ✗ ✗ ✗

Go1 ZS ✓ ✓ ✓ ✗ ✗
Stoch5 ZS ✓ ✓ ✓ ✓ ✓

5 B1 ZS ✓ ✓ ✓ ✓ ✓
B2 SO ✓ ✓ ✓ ✓ ✓

Aliengo SO ✓ ✓ ✓ ✓ ✗
Stoch3 SO ✓ ✓ ✓ ✓ ✓

Table 1: Evaluation on stair environments with increasing difficulty (13–29 cm step heights). A
checkmark (✓) indicates successful climbing of 8 stairs, and a cross (✗) indicates failure.

(a) Go1 Body Trajectory Across Settings (b) Body Trajectory of B1(ZS) vs Aliengo(SO)

Figure 4

3.1 Cross-Robot and Cross-Terrain Generalization Analysis

We construct multiple training regimes using combinations of the two locomotion behaviors (pe-
riodic gaits and stair traversal) across different robot morphologies. Some configurations include
data from both flat and stair policies, while others restrict terrain or robot access to examine gener-
alization. Our goal is to understand how skill and morphology diversity in training data influences
a policy’s ability to (a) Generalize to unseen robots (cross-morphology). (b) Transfer learned skills
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Figure 5: Go1(ZS) Foot contact sequence on Flat terrain- black regions are periods of foot contact

Figure 6: Stoch3(SO) Foot contact sequence on Flat terrain- black regions are periods of foot contact

(e.g., from flat to stair). (c) Acquire and retain multiple locomotion behaviors simultaneously. (d)
Handle increasingly difficult Out-of-Distribution (OOD) terrain such as higher stairs.

Our training configurations, each involving a different subset of robots and terrain skills (flat and/or
stair). For each configuration, robots are categorized as follows:

• Zero-Shot (ZS): The robot is entirely unseen during training (neither flat nor stair).

• Flat Only (FO): The robot contributed only flat terrain data during training.

• Stair Only (SO): The robot was included in training with stair terrain data.

Table 1 summarizes the results. Flat walking evaluations for the same policies are discussed later
in this section to investigate transfer of cyclic motion. All experiments are conducted with a com-
manded forward velocity of 1m/s along the x-axis.

Experiment Settings. We consider five distinct data distribution settings for training:

• Setting 1: Flat-terrain data from B2; stair-climbing data from Aliengo and Stoch3.

• Setting 2: Flat-terrain data from Go1 and Stoch3; stair-climbing data from B2.

• Setting 3: Flat-terrain data from Go1; stair-climbing data from Aliengo and Stoch3.

• Setting 4: Flat-terrain data from Stoch3; stair-climbing data from Go1.

• Setting 5: Both flat terrain and stair-climbing data from Aliengo, B2, and Stoch3.

Stair Climbing Generalization Analysis. We draw four key insights from the results in Table 1,
supported by base trajectories and gait visualizations across robots.
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Robot Smooth Slopes Rough Slopes
25◦ 30◦ 40◦ 25◦ 30◦ 40◦

Go1 ✓ ✗ ✗ ✓ ✗ ✗
Stoch5 ✓ ✓ ✓ ✓ ✓ ✓
Aliengo ✓ ✓ ✓ ✓ ✓ ✓
Stoch3 ✓ ✓ ✗ ✓ ✓ ✗

B2 ✓ ✓ ✓ ✓ ✓ ✓
B1 ✓ ✓ ✓ ✓ ✓ ✓

(a) Zero-shot slope traversal results. (b) Base trajectory on 40◦ rough slope.

Figure 7: Binary performance assessment and visual evaluation of zero-shot generalization to novel
slopes.

1. Full Diversity Training Enables Strong Zero-Shot Transfer. Setting 5, which includes
flat and stair data from three diverse robots, yields the best zero-shot (ZS) generalization to
unseen embodiments and out-of-distribution (OOD) stairs. For example, Go1 in Setting 5
climbs 21 cm stairs ZS, whereas it fails at the same height in Setting 2 as depicted in the
Figure 4a. Compared to Setting 4, where all ZS robots fail beyond 17 cm, Setting 5 shows
clear cross-embodiment transfer.

2. Stair-Trained Policies Generalize Beyond Training Range. Stair-only (SO) robots gen-
eralize to OOD stairs beyond their training limit of 17 cm. In Setting 5, B2 and Stoch3
successfully traverse 25 cm and 29 cm stairs, showing strong terrain extrapolation.

3. Zero-Shot Robots Can Outperform Stair Specialists. In some cases, ZS robots surpass
SO-trained ones. For instance, in Setting 3, B1 (ZS) climbs 29 cm stairs, while Aliengo
(SO) fails. Figure 4b suggests more adaptive motions in ZS policies due to morphology-
driven robustness.

4. Flat-Only Policies Exhibit Stair Climbing Generalization. Flat-only (FO) policies show
generalization to stairs. In Setting 2, Stoch3 (FO) climbs 25 cm OOD stairs despite no
elevation exposure during training, indicating transferable skills like stable gait and foot
placement.

5. Emergence of Cyclic Gaits Across Robots. Gait plots (Figures 5, 6) show structured,
cyclic patterns in both ZS (Go1) and SO (Stoch3) policies across terrains.

3.2 Generalization to Novel Terrains

We evaluate zero-shot generalization of our locomotion policies to smooth and rough inclined slopes
at angles of 25◦, 30◦, and 40◦, none of which appeared in training. All robots are deployed in a fully
zero-shot setting (unseen robot × terrain). Table in Figure 7a summarizes binary success (✓) or
failure (✗) on each slope.

Consistent High-Performers. Stoch5, Aliengo, B2, and B1 succeed on all smooth and rough slopes
up to 40◦, demonstrating exceptionally robust zero-shot slope traversal across morphologies and
terrain irregularities.

Minimal Impact of Roughness for Robust Policies. For high-performing robots, undulating ter-
rain (see Fig. 7b) does not degrade performance compared to smooth slopes. This suggests that
our policy architectureand particularly the cross-robot trainingcaptures slope-invariant locomotion
strategies.

Zero-Shot Emergence of Adaptive Behavior. Despite no slope data during training, policies ex-
hibit adaptive base movement and posture control on inclines. Base trajectory plots (Figure 7b)
reveal smooth and progressive elevation changes, indicating stable and coordinated climbing behav-
ior in a zero-shot setting.
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Hardware deployment. We deployed a cloned policy on the Unitree Go1 and Stoch5. Go1 policy
(Setting 5 in Table 1) demonstrated a zero-shot transfer for both flat-ground and staircases (15cm
height). Stoch 5 policy demonstrated robust walking on flat-ground and slopes. Detailed results will
be provided in the supplementary material.

4 Conclusion and Limitations

Currently, GRoQ-LoCO is focused on robots with comparable kinematic setups. Extending the
framework to quadrupeds with more diverse morphologies such as those with different leg pro-
portions or joint arrangements remains an exciting direction for future work. Furthermore, while
our current system is based on proprioceptive feedback, integrating exteroceptive inputs like vision
could allow the policy to become more visually aware, enhancing its ability to navigate complex
environments and adapt to dynamic terrain. Another area for exploration involves expanding the ap-
proach beyond quadruped robots to other types of legged robots, such as hexapods or bipeds, where
the dynamics of locomotion may present new challenges. Addressing these aspects will further
enhance the versatility and generalization capabilities of our locomotion policies.

Acknowledgments

This research is funded by AI & Robotics Technology Park (ARTPARK), India

References
[1] A. Brohan et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint

arXiv:2212.06817, 2022. URL https://arxiv.org/abs/2212.06817.

[2] A. Brohan et al. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. arXiv preprint arXiv:2307.15818, 2023. URL https://arxiv.org/abs/2307.

15818.

[3] Open X-Embodiment Collaboration. Open x-embodiment: Robotic learning datasets and rt-x
models. In Proceedings of the 2024 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 6892–6903. IEEE, 2024. doi:10.1109/ICRA57147.2024.10611477. URL
https://arxiv.org/abs/2310.08864.

[4] K. Bousmalis, G. Vezzani, D. Rao, C. M. Devin, A. X. Lee, M. B. Villalonga, T. Davchev,
Y. Zhou, A. Gupta, A. Raju, A. Laurens, C. Fantacci, V. Dalibard, M. Zambelli, M. F. Martins,
R. Pevceviciute, M. Blokzijl, M. Denil, N. Batchelor, T. Lampe, E. Parisotto, K. ona, S. Reed,
S. G. Colmenarejo, J. Scholz, A. Abdolmaleki, O. Groth, J.-B. Regli, O. Sushkov, T. Rothrl,
J. E. Chen, Y. Aytar, D. Barker, J. Ortiz, M. Riedmiller, J. T. Springenberg, R. Hadsell, F. Nori,
and N. Heess. Robocat: A self-improving generalist agent for robotic manipulation. Transac-
tions on Machine Learning Research, 2024. URL https://openreview.net/forum?id=

vsCpILiWHu. Accepted.

[5] A. Reske, J. Carius, Y. Ma, F. Farshidian, and M. Hutter. Imitation learning from mpc for
quadrupedal multi-gait control. In Proceedings of the 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 5014–5020. IEEE, 2021. doi:10.1109/ICRA48506.
2021.9561214. URL https://arxiv.org/abs/2103.14331.

[6] X. Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic, and K. Sreenath. Diffuse-
loco: Real-time legged locomotion control with diffusion from offline datasets. In P. Agrawal,
O. Kroemer, and W. Burgard, editors, Proceedings of The 8th Conference on Robot Learning,
volume 270 of Proceedings of Machine Learning Research, pages 1567–1589. PMLR, 06–09
Nov 2025. URL https://proceedings.mlr.press/v270/huang25a.html.

[7] G. Mothish, M. Tayal, and S. Kolathaya. Birodiff: Diffusion policies for bipedal robot loco-
motion on unseen terrains. In Proceedings of the 10th Indian Control Conference (ICC), pages

9

https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2307.15818
http://dx.doi.org/10.1109/ICRA57147.2024.10611477
https://arxiv.org/abs/2310.08864
https://openreview.net/forum?id=vsCpILiWHu
https://openreview.net/forum?id=vsCpILiWHu
http://dx.doi.org/10.1109/ICRA48506.2021.9561214
http://dx.doi.org/10.1109/ICRA48506.2021.9561214
https://arxiv.org/abs/2103.14331
https://proceedings.mlr.press/v270/huang25a.html


385–390. IEEE, 2024. doi:10.1109/icc64753.2024.10883743. URL https://arxiv.org/

abs/2407.05424.

[8] R. O’Mahoney, A. L. Mitchell, W. Yu, I. Posner, and I. Havoutis. Offline adaptation of
quadruped locomotion using diffusion models. arXiv preprint arXiv:2411.08832, 2024. URL
https://arxiv.org/abs/2411.08832.

[9] . Gajewski et al. Solving multi-goal robotic tasks with decision transformer. In arXiv, 2024.
URL https://arxiv.org/abs/2410.06347.

[10] W. Dong et al. Optimizing robotic manipulation with decision-rwkv: A recurrent se-
quence modeling approach for lifelong learning. In Journal of Computing and Informa-
tion Science in Engineering, 2025. URL https://asmedigitalcollection.asme.org/

computingengineering/article/25/3/031004/1210989.

[11] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter.
Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872,
2019. doi:10.1126/scirobotics.aau5872. URL https://www.science.org/doi/10.1126/

scirobotics.aau5872.

[12] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
In Proceedings of Robotics: Science and Systems (RSS), 2021. doi:10.15607/RSS.2021.XVII.
011. URL https://arxiv.org/abs/2107.04034.

[13] Y. Xue et al. Learning vision-guided quadrupedal locomotion end-to-end with a locomotion
transformer. In Proceedings of the 2021 Conference on Robot Learning, 2021. URL https:

//arxiv.org/abs/2107.03996.

[14] D. Hoeller et al. Anymal parkour: Learning agile navigation for quadrupedal robots. In
Proceedings of the 7th Conference on Robot Learning, 2023. URL https://arxiv.org/

abs/2306.14874.

[15] Y. Wang et al. Amp in the wild: Learning robust, agile, natural legged locomotion skills. arXiv
preprint arXiv:2304.10888, 2023. URL https://arxiv.org/abs/2304.10888.

[16] J. Long, Z. Wang, Q. Li, L. Cao, J. Gao, and J. Pang. Hybrid internal model: Learning agile
legged locomotion with simulated robot response. In Proceedings of the Twelfth International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/

forum?id=93LoCyww8o.

[17] G. Kim, Y.-H. Lee, and H.-W. Park. A learning framework for diverse legged robot locomotion
using barrier-based style rewards. arXiv preprint arXiv:2409.15780, 2024. URL https:

//arxiv.org/abs/2409.15780.

[18] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue, Z. Song, L. Yang, Y. Liu,
K. Sreenath, and S. Levine. Genloco: Generalized locomotion controllers for quadrupedal
robots. In L. P. Kaelbling, D. Kragic, and K. Fragkiadaki, editors, Proceedings of the 6th
Conference on Robot Learning (CoRL), volume 205 of Proceedings of Machine Learning Re-
search, pages 1893–1903. PMLR, 2022. URL https://proceedings.mlr.press/v205/

feng23a.html.

[19] N. Bohlinger, G. Czechmanowski, M. Krupka, P. Kicki, K. Walas, J. Peters, and D. Tateo. One
policy to run them all: an end-to-end learning approach to multi-embodiment locomotion. In
Proceedings of the 8th Conference on Robot Learning (CoRL), 2024. URL https://arxiv.

org/abs/2409.06366.

[20] Z. Luo, X. Li, R. Huang, Z. Shu, E. Xiao, and Y. Dong. Moral: Learning morphologically
adaptive locomotion controller for quadrupedal robots on challenging terrains. IEEE Robotics
and Automation Letters, 9(5):4019–4026, 2024. doi:10.1109/lra.2024.3375086. URL https:

//ieeexplore.ieee.org/document/10463132.

10

http://dx.doi.org/10.1109/icc64753.2024.10883743
https://arxiv.org/abs/2407.05424
https://arxiv.org/abs/2407.05424
https://arxiv.org/abs/2411.08832
https://arxiv.org/abs/2410.06347
https://asmedigitalcollection.asme.org/computingengineering/article/25/3/031004/1210989
https://asmedigitalcollection.asme.org/computingengineering/article/25/3/031004/1210989
http://dx.doi.org/10.1126/scirobotics.aau5872
https://www.science.org/doi/10.1126/scirobotics.aau5872
https://www.science.org/doi/10.1126/scirobotics.aau5872
http://dx.doi.org/10.15607/RSS.2021.XVII.011
http://dx.doi.org/10.15607/RSS.2021.XVII.011
https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/2107.03996
https://arxiv.org/abs/2107.03996
https://arxiv.org/abs/2306.14874
https://arxiv.org/abs/2306.14874
https://arxiv.org/abs/2304.10888
https://openreview.net/forum?id=93LoCyww8o
https://openreview.net/forum?id=93LoCyww8o
https://arxiv.org/abs/2409.15780
https://arxiv.org/abs/2409.15780
https://proceedings.mlr.press/v205/feng23a.html
https://proceedings.mlr.press/v205/feng23a.html
https://arxiv.org/abs/2409.06366
https://arxiv.org/abs/2409.06366
http://dx.doi.org/10.1109/lra.2024.3375086
https://ieeexplore.ieee.org/document/10463132
https://ieeexplore.ieee.org/document/10463132


Appendix

A Extended Results section

We report additional zero-shot results beyond those presented in the main paper. The physical
parameters of all quadruped robots, including those used in the main paper, are provided in Table 2.
Table 3 reports zero-shot results on stair environments using two new quadruped robots: Lite3 and
X30. Table 4 further shows zero-shot performance on slope terrains (smooth and rough) across
robots.

All experiments are conducted with a commanded forward velocity of 1m/s along the x-axis.

Parameter A1 Go1 Aliengo Stoch3 B1 B2 Stoch5 Lite X30
Total weight (kg) 12 13 21 25 50 60 70 13 56
Base length (m) 0.40 0.38 0.65 0.54 0.92 0.80 0.67 0.53 0.90
Base width (m) 0.19 0.16 0.15 0.20 0.24 0.24 0.26 0.20 0.30
Height, fully standing (m) 0.40 0.40 0.48 0.50 0.63 0.64 0.55 0.40 0.47
Thigh Length (m) 0.20 0.22 0.26 0.30 0.35 0.35 0.35 0.2 0.3
Calf Length (m) 0.20 0.22 0.26 0.35 0.35 0.35 0.35 0.21 0.31

Table 2: Comparison of quadruped robot parameters

Setting Robot Mode 13 cm 17 cm 21 cm (OOD) 25 cm (OOD) 29 cm (OOD)

1 Lite3 ZS ✓ ✓ ✗ ✗ ✗
X30 ZS ✓ ✓ ✓ ✓ ✗

2 Lite3 ZS ✗ ✗ ✗ ✗ ✗
X30 ZS ✓ ✓ ✓ ✗ ✗

3 Lite3 ZS ✓ ✗ ✗ ✗ ✗
X30 ZS ✓ ✓ ✓ ✗ ✗

4 Lite3 ZS ✓ ✓ ✓ ✗ ✗
X30 ZS ✓ ✓ ✗ ✗ ✗

5 Lite3 ZS ✓ ✓ ✗ ✗ ✗
X30 ZS ✓ ✓ ✓ ✓ ✗

Table 3: Zero-Shot evaluation on stair environments for Lite3 and X30 robots.

Robot Smooth Slopes Rough Slopes
25 30 40 25 30 40

Lite3 ✓ ✓ ✗ ✓ ✓ ✗
X30 ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Zero-shot slope traversal results.

B Robot Encoding vs No Robot Encoding

The main paper presents five cross-robot training settings involving various combinations of flat-
terrain and stair-climbing data. We provide extended analysis for Setting 1 (flat data from B2;
stair data from Aliengo and Stoch3), comparing models trained with explicit robot encodings under
otherwise identical conditions. Table 5 shows the stair-climbing results using policies trained with
explicit robot encodings.

We use robot encodings as part of observation input to the model, derived from predefined metadata
as shown in the table 2. However, we observe that explicit robot encoding does not lead to reliable
generalization. Specifically, robots like Go1 and Lite3, whose embeddings are significantly different
from those seen during training, fail to exhibit meaningful behavior. These robots attempt to walk but
immediately collapse with erratic actions, indicating poor transfer to out-of-distribution embeddings.
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Setting Robot Mode 13 cm 17 cm 21 cm (OOD) 25 cm (OOD) 29 cm (OOD)
Go1 ZS ✗ ✗ ✗ ✗ ✗

Stoch5 ZS ✓ ✓ ✓ ✗ ✗
B1 ZS ✓ ✓ ✓ ✗ ✗

1 B2 FO ✓ ✓ ✓ ✗ ✗
Aliengo SO ✓ ✓ ✓ ✗ ✗
Stoch3 SO ✓ ✓ ✓ ✗ ✗
Lite3 ZS ✗ ✗ ✗ ✗ ✗
X30 ZS ✓ ✓ ✓ ✗ ✗

Table 5: Evaluation on stair environments with increasing difficulty (1329 cm step heights). A
checkmark (✓) indicates successful climbing of 8 stairs, and a cross (✗) indicates failure.

In contrast, we observe some degree of skill fusion in the FO (Flat-only) robots. For instance,
B2, trained solely on flat terrain, can climb stairs up to 21 cm. Robots with similar embeddingsB1,
Stoch5, and X30also demonstrate similar stair-climbing behavior in zero-shot settings. This sug-
gests that proximity in the embedding space can enable generalization.

Gait Analysis: We observe clear periodic gaits for ZS (Zero-shot) robots (Stoch5) in the no-robot-
encoding case (Figure 8), indicating successful skill fusion. In contrast, the robot-encoding variant
(Figure 9) shows disrupted periodicity, suggesting weaker generalization.

Hypothesis: We hypothesize that more diverse training data spanning a broader range of robot
morphologies could improve the learned embedding space. Additionally, future work could explore
varying the embedding dimensionality or structure to enhance generalization and avoid overfitting
to specific robot identities.

Figure 8: Stoch5(ZO) Foot contact sequence on Flat terrain - No Robot Encoding

Figure 9: Stoch5(ZO) Foot contact sequence on Flat terrain - Robot Encoding
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(a) 0 steps (All joints) (b) FL Abd (c) FL Knee

(d) FR Hip (e) BL Knee (f) BR Abd

Figure 10: Kernel density plots of residual errors across representative joints. Subfigure (a) shows
the initial high-variance residual distribution across all joints at step 0, while (bf) show joint-specific
residuals after 3000 training steps, revealing progressive variance adaptation.

C Adaptive Loss and Residual Variance Dynamics

To analyze the effectiveness of the adaptive loss in modeling complex locomotion behaviors across
diverse terrains, we investigate the learned per-joint residual distributions after 3000 training steps.
Our loss function dynamically adjusts the contribution of each joint prediction by learning a joint-
specific variance σ2, which controls the weighting of the corresponding residuals during optimiza-
tion.

Per-Joint Residual Distribution Analysis

The residuals approximately follow zero-mean Gaussian distributions, with their learned variances
reflecting the relative modeling difficulty of each joint.

We visualize representative residual distributions for selected joints after 3000 training steps un-
der the adaptive loss framework. The plots show per-joint residuals fitted to zero-mean Gaussians,
with variance values learned through joint-wise adaptive weighting. The selected joints span differ-
ent joint types (abdomen, hip, knee) and leg locations (front/back, left/right), ensuring a balanced
representation across the body.

Visualization

Figure 10 shows kernel density plots of the residuals after 3000 training iterations. The shift in
density and narrowing of variance highlights the transition from cautious early-stage learning to
confident, fine-tuned predictions in later training. These plots further validate the utility of per-joint
adaptive weighting for both stable and high-variance locomotion regimes.

D Architectural Details

D.1 Model Architecture

Table 6 displays the hyperparameters of the model. Our architecture follows a modular and inter-
pretable design intended for generalist quadruped locomotion. The architecture is composed of the
following blocks:
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Component Value Remarks
Embedding Dimension (emb dim) 64 Used in the observation encoder module
Observation Dimensionality 54 + 3 Observation + commanded velocity
GRU Hidden Size 64 Matching the embedding dim
Attention Heads 4 In both attention blocks
Attention Window Size 100 For both obs and GRU attention
MLP Hidden Size 256 2-layer ELU MLP head
Optimizer Adam Standard
Learning Rate 1e−3 Fixed across experiments
Batch Size 400 Per forward pass (batch of 400 trajectories)

Table 6: Model Hyperparameters

• Observation Encoder: A linear layer with ELU activation followed by LayerNorm that
encodes raw observations and estimated velocity into an embedding space of dimension
emb dim = 128.

• Observation Attention Block: Multi-head self-attention with 4 heads is applied over a
temporal window of past observations using fixed sinusoidal positional embeddings.

• GRU Block: A GRU module with input size 2×emb dim and hidden size emb dim encodes
the temporal evolution of attended observation features.

• GRU Attention Block: Similar to the observation attention block, this layer captures tem-
poral dependencies over the GRU outputs.

• MLP Head: A 3-layer MLP maps the concatenated context vector (raw observation en-
coding, GRU output, and GRU attention output) into action space.

A schematic diagram of the model structure is given in the main paper.

D.2 Attention Design: Single Query Approach

In our model, two types of history are maintained: the observation history and the GRU history.
These histories allow the model to capture temporal dependencies across observations and GRU
outputs, respectively.

Observation History: The observation history consists of the most recent observations, stored over
a window of size W = 100. For each timestep, the encoded observation is appended to the history.
When the window exceeds its size, the earliest observation is removed to make room for the new
one.

Let the observation history be denoted as:

o = [o1, o2, . . . , oW ]

Where ot represents the encoded observation at timestep t, and W is the maximum number of
timesteps the history holds.

GRU History: Similarly, the GRU history stores the output of the GRU at each timestep. The GRU
processes the concatenated observation and its associated attention context, and the resulting output
is stored in a history buffer of size W = 100.

Let the GRU history be denoted as:

h = [h1, h2, . . . , hW ]
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Where ht represents the GRU output at timestep t, and W is the size of the GRU history window.

Single Query Attention: After storing these histories, the attention mechanism uses the most recent
timestep from the observation history and GRU history for the query. This reduces computational
complexity by using only the latest timestep for attention calculations, rather than the entire history.

Let qo = oW and qh = hW be the queries from the observation and GRU histories, respectively.
The attention computation is performed as follows:

Attention(qo,o) = Softmax
(
qoK

T
o√

dk

)
Vo

Attention(qh,h) = Softmax
(
qhK

T
h√

dk

)
Vh

Where: - Ko and Kh are the key matrices for observation and GRU histories, respectively, - Vo and
Vh are the value matrices for observation and GRU histories, and - dk is the dimension of the key
vectors.

This single query approach is computationally lighter compared to using full attention, as it mini-
mizes both memory and computation costs.

D.3 Attention Pattern Analysis Across Terrains

To understand how the policy attends to information during decision-making, we analyze the mean
attention scores per head of both GRU-based temporal attention and observation (OBS) attention
layers. Figures 11, 12, and 13 show attention patterns for GRU embeddings across three terrains:
flat, stairs, and slope. Corresponding observation attention patterns are shown in Figures 14, 15, and
16.

Key Insight: Each attention head exhibits consistent patterns across different robots when condi-
tioned on the same terrain, indicating that the policy has learned to focus on terrain-specific dynam-
ics rather than robot-specific features.

GRU Attention: GRU attention heads show rhythmic and alternating patterns over time, with the
attention weights oscillating between recent and earlier GRU embeddings. This reflects temporal
reasoning and the use of history to maintain gait periodicity, especially in flat and slope terrains.
The average attention maps confirm that previous time steps are actively attended to, suggesting the
network is leveraging temporal memory to drive locomotion.

Observation Attention: In contrast, observation attention heads primarily focus on the most recent
observation, regardless of terrain type, which could indicate that immediate sensory feedback is
critical for terrain-reactive behavior.

Robots Used for Evaluation:

• Go1 (small) Agile and lightweight

• Stoch3 (medium) Mid-weight, versatile platform

• B1 (large) Heavy-duty robot for large terrain disturbances

Overall, the shared attention behavior across robot morphologies reinforces the terrain-conditioned
generalization capability of the policy, validating the design’s robustness and scalability.
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Robot \ Head Head 0 Head 1

Go1 (Small)

Stoch3 (Medium)

B1 (Large)

Figure 11: Mean GRU Attention Curves for Flat Terrain (17cm) Across Robots and Selected Heads

Robot \ Head Head 0 Head 1

Go1 (Small)

Stoch3 (Medium)

B1 (Large)

Figure 12: Mean GRU Attention Curves for Stair Terrain (17cm) Across Robots and Selected
Heads
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Robot \ Head Head 0 Head 1

Go1 (Small)

Stoch3 (Medium)

B1 (Large)

Figure 13: Mean GRU Attention Curves for Slope Terrain (Rough Slopes - 25◦) Across Robots
and Selected Heads

Robot \ Head Head 0 Head 1

Go1 (Small)

Stoch3 (Medium)

B1 (Large)

Figure 14: Mean OBS Attention Curves for Flat Terrain Across Robots and Selected Heads
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Robot \ Head Head 0 Head 1

Go1 (Small)

Stoch3 (Medium)

B1 (Large)

Figure 15: Mean OBS Attention Curves for Stair Terrain Across Robots and Selected Heads

Robot \ Head Head 0 Head 1

Go1 (Small)

Stoch3 (Medium)

B1 (Large)

Figure 16: Mean OBS Attention Curves for Slope Terrain (Rough Slopes - 25◦) Across Robots and
Selected Heads
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