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ABSTRACT 
 

   This report presents a novel approach to quadruped locomotion control across diverse 

terrains, integrating reinforcement learning (RL) techniques with proprioceptive 

observations. While existing literature focuses on enabling quadrupeds to follow various gait 

patterns or employing trot gaits for challenging landscapes, little attention has been given to 

controllers capable of demonstrating different gaits across varied terrain types. Our study 

introduces an RL-based methodology for controlling quadruped locomotion over a range of 

terrains, leveraging multiple gaits including trotting, hopping, bounding, and pacing. We 

utilize RL policies to facilitate the emergence of gaits adept at traversing uneven landscapes, 

while enforcing diverse behaviors such as gait selection, body height adjustments, and step 

height modulation. 

 

   Importantly, we leverage the asymmetric actor-critic framework wherein the actor receives 

partial state information (POMDP), while the critic has access to the full state, including 

privileged information. This setup enhances the adaptability and robustness of the learning 

process by simulating real-world partial observability scenarios. We propose an asymmetric 

reward architecture wherein robots navigating uneven terrain receive lesser coefficients of 

negative auxiliary rewards compared to those on flat surfaces. This adaptation, based on the 

Isaac Gym environment, optimizes locomotion strategies by balancing risk and performance 

across different terrains. 

 

   Additionally, we integrate Control Barrier Function-based rewards to imbue our controller 

with less aggressive and more energy-efficient locomotion. This incorporation enhances the 

adaptability and safety of our system, enabling the quadruped to navigate complex 

environments while conserving energy resources. By demonstrating the efficacy of our 

approach through simulations and real-world experiments, we illustrate how our RL-based 

controller seamlessly adapts to varying terrain conditions, offering a promising avenue for 

the development of agile and efficient robotic locomotion systems.
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1. INTRODUCTION 

   Reinforcement learning (RL) is a framework for developing controller by interacting with 

a environment and continuously improving the controller based upon the feedback received 

in the form of rewards. Owing to the development of RL algorithms capable of handling 

continuous action space [1], [2], RL has been demonstrated by several studies [3], [4], [5] as 

a powerful alternative or replacement for model-based methods of designing a controller for 

quadruped robots. Often, even with state-of-the-art RL algorithms, training controller for a 

particular robot requires several million interactions in the simulation. To that end, an 

impetus has been provided to the quadruped locomotion research by Isaac Gym [3] that 

allows training several agents in parallel using proprioceptive inputs within a short span of 

time.  

   Several works [3], [6], [4], [7], [8] have shown amazing results in the direction of 

quadruped walking by utilizing position control based on proprioceptive observations, 

including but not limited to joint angles, joint angular velocity, robot orientation, etc. 

Although, proprioception-based controller is suitable flat terrain walking but will struggle 

when faced with terrains including uneven surfaces, slopes or slippery surfaces. A common 

approach taken by works such [4], [5], [7] involves making use of adaptation module to 

estimate height map around the quadruped or ground friction by taking as input of history of 

proprioception states. [5] has even shown impressive results on stair without any vision-

based input. This speaks in favour of encouraging development of robust proprioception 

based controllers that can in future assist vision-based quadruped controller even in the event 

of failure of vision modality.  

   A robust quadruped controller might require different types of gait such pacing, bounding 

or pronking if it has to traverse different terrain. One of the seminal works that focus on 

developing a RL-based controller capable to demonstrating different gait behaviors is [8]. [8] 

uses Raibert heuristic [9] to learn variety of gaits. Their controller is trained for several gait 

parameters including step height, body height, step frequency, etc.. The multiplicity of be- 

haviour allows traversal on different terrain but requires a human intervention to determine 

the gait parameters. [5] is able to traverse different terrains such as stairs without any help 

from human by automatically changing step height. Nevertheless, [5] is capable of moving 
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using only trot gait. There are very few works that focus on traversing different terrains using 

different gait behavior[10].  

   In this work we focus on developing a controller using RL algorithm that is capable of 

walking on different terrains using different type of gait behaviour by using entirely 

proprioception. We leverage asymmetric actor-critic [11] architecture to eliminate the 

training of adaptation module for locomotion on diverse terrain. At the same time, we 

propose the use of asymmetric reward functions for acquiring good behaviour both of flat 

and non-flat terrains. Further, we try to enforce different gait behaviors using Raibert 

heuristic. Moreover, we also incorporate control barrier function based rewards to make the 

controller less aggressive and more energy efficient[12].  

1.1. Preliminaries 

A. Reinforcement Learning  

   Usually, a task in reinforcement learning (RL) is described using the framework of Markov 

Decision Process (MDP). An MDP M is defined using the tuple M = {S,A,R,P,γ}. Here, S 

denotes the set of all states an RL agent can witness and A denotes the set of all actions 

available to the agent. Moreover, R : S ×A×S → R is the reward function and P : S × A → 

B(S) is the transition probability kernel, where B(S) is the Borel σ-algebra over the set S. 

Given an MDP, our objective (η(π)) is to find a policy (π) to maximize long term discounted 

summation of rewards (η(π) = 
P

t(γ
tr(st, at, st+1)) . In the case of continuous state and action 

space, actor-critic algorithms [1], [2] based on approximate policy iteration scheme are used 

to obtain near-optimal policies.  

B. Asymmetric Actor-Critic 

   Actor-Critic algorithms majorly contain two components: Actor and Critic. Actor is 

function of states and provides actions depending on states while critic component contains 

information about long term discounted reward achievable from a particular state while 

following a policy. Usually, the states passed to an actor and critic are same. However, it has 

been shown previously in [11] that in case the environment is partially observable, providing 

full states to the critic and partial states to the actor provides performance benefits as 
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compared to providing partial observation to both the components. Therefore, in this work 

we will use asymmetric version of proximal policy optimization (PPO) [1] algorithm with 

rewards shaped using Raibert heuristic and barrier function .  

C. Reward Shaping 

   Reward shaping is a critical component of developing controller for quadruped. Raibert 

heuristic ([9], [8]) is used to design reward function to allow the robot to change various 

parameters of gait such as step height, step frequency, stance width, etc. In the absence of 

Raibert heuristic, enforcing a particular gait parameter such as stance width becomes 

difficult. Moreover, barrier function based reward shaping is used to make the quadruped 

controller energy efficient and less aggressive behavior[12]. Barrier functions can be 

constructed to make sure the states of the system always satisfies a particular constraint. If a 

function h satisfies 2 and 1, where κ is an increasing continuous function, δC denotes 

boundary of a set C and Int(C) denotes interior of the set C, then it can be guaranteed that the 

set C of states satisfying desirable constraints is a forward invariant set. Consequently, to 

satisfy 2 the reward function can be constructed as follows: r
′ 
(s, s ̇, a) = r(s, a) + rBF (s, ( ̇s)), 

where rBF (s, ( ̇s)) = h ̇ (s, s ̇) + λ(s) and λ ∈ R>0.  

        

 

   The structure of the paper is as follows: In section II. we throw light of the previous works. 

Further, in section III, we establish the objectives of this work. In section IV, we talk about 

our specific details of our method and the structure of the controller. Next, we discuss the 

results obtained from out method in section V followed by conclusion of our work in section 

VI.   
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2.  LITERATURE REVIEW 
 

 

   Quadrupedal locomotion, particularly in challenging terrains, has garnered significant 

interest in the robotics community due to its applications in search and rescue missions, 

inspections, exploration, and disaster response. Various approaches have been explored to 

develop robust locomotion policies for quadruped robots, with deep reinforcement learning 

(DRL) emerging as a promising technique. In this section, we review recent advancements in 

this field, focusing on methodologies, limitations, and opportunities for improvement. 

 

2.1.   Deep Reinforcement Learning for Quadruped Locomotion: 

   Recent research has witnessed the application of DRL algorithms to train locomotion 

policies for quadruped robots. “DreamWaQ”, proposed by [authors] et. al., introduces a 

framework for learning robust quadrupedal locomotion on uneven terrains such as slopes, 

stairs, uneven ground, solely from proprioceptive inputs using a DRL algorithm. Notably, the 

framework utilizes an asymmetric actor-critic architecture to implicitly imagine terrain 

properties, resulting in the emergence of locomotion behaviors, primarily trot gait, driven by 

the minimization of energy consumption.  

   Other works like "Walk These Ways", proposed by [8] et. al., contribute to the 

development of low-level quadruped controllers capable of executing diverse structured 

behaviors, including various gaits and movements. This approach emphasizes the utility of 

interpretable high-level control interfaces, facilitating the collection of quadruped 

demonstrations for diverse tasks. Moreover, the incorporation of Multiplicity of Behavior 

(MoB) techniques enables the learning of a single policy encoding a structured family of 

locomotion strategies, allowing rapid adaptation to diverse environments without the need 

for extensive retraining. The "Walk These Ways" framework showcases MoB as a practical 

tool for out-of-distribution generalization, offering diverse locomotion strategies such as 

crouching, hopping, high-speed running, stair traversal, and rhythmic dance. By learning 

multiple methods of achieving goals, MoB facilitates generalization across different tasks 

and environments, thereby bypassing the iterative cycle of reward and environment redesign 

typically required for out-of-distribution scenarios. 
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In this section, we delve into a detailed examination of the DreamWaQ, Walk These Ways 

methodologies and “Minimizing energy consumption leads to the emergence of dif. 

 

2.2.   DreamWaQ: Learning Robust Quadrupedal Locomotion With Implicit Terrain 

Imagination via Deep Reinforcement Learning: 

   In their paper, "DreamWaQ", the authors introduce a framework designed to train a robust 

locomotion policy for quadruped robots using only proprioception inputs and deep 

reinforcement learning (RL) algorithms. Their contributions, articulated in three main points, 

underscore the innovative approach of their framework: 

 

A.  Novel Locomotion Learning Framework: The authors propose a pioneering 

locomotion learning framework characterized by an asymmetric actor-critic 

architecture. This architecture allows for the implicit imagination of terrain properties 

solely from proprioceptive inputs, representing a departure from traditional methods 

that rely on explicit terrain information. 

B.  Context-Aided Estimator Network: A context-aided estimator network is 

introduced to jointly estimate body state and environmental context. This integrated 

approach, in conjunction with the policy, outperforms existing learning-based 

methods, demonstrating the efficacy of leveraging contextual information in 

locomotion control. 

C.  Robustness and Durability Evaluation: The learned policy's robustness and 

durability are rigorously evaluated in real-world scenarios through walking 

experiments conducted in diverse outdoor environments. This empirical validation 

underscores the practical applicability and effectiveness of the proposed method in 

real-world settings. 

 

   At the core of DreamWaQ lies the concept of learning a robust representation of the state, 

serving as the foundation for predicting joint angles directly from proprioceptive inputs. The 

framework's learning process is illustrated in Figure 1, providing an overview of the 

DreamWaQ learning framework. 
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Fig. 1 

Recent research efforts have explored the teacher-student training paradigm, wherein a 

teacher network, trained in simulation with full state inputs including privileged extrinsic 

information such as terrain height maps and friction coefficients, serves as an expert policy 

to train a student network deployed in real-world hardware. However, the authors note 

certain limitations inherent in behavior cloning, particularly concerning the student policy's 

inability to learn failure states encountered by the teacher policy during early learning stages. 

Motivated by these limitations, the authors propose a unified learning framework featuring 

an asymmetric actor-critic architecture for robust locomotion behavior learning on uneven 

terrains. 

Terminologies 

 - temporal observation at time t over the past H measurements 

- observation at time t (n x 1 vector) 

 -  privileged observation 

 Zt - latent representation of world state 

 Vt - body linear velocity estimated by CENet 

Policy Network 

   The observations to the policy network are: 
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1. Ot 

2.  Zt 

3.  Vt 

Zt and Vt are estimated by the Context-Aided Estimator Network while Ot is obtained from 

joint encoders and IMU. Since the policy network is provided only with the partial 

observations, it ensures seamless transition to hardware implementation, thus bypassing the 

usual method of training a student network architecture.  

Value Network 

   The value network receives the full state of the world, which includes partial observation 

Ot, body velocity Vt, disturbance force dt and height map scan ht and is trained to output a 

single value that represents the value of the state.  

Action Space 

   The action space is a 12 x 1 vector representing the target joint angles of the robot with 

respect to the robot’s initial stand still pose.  

 

Reward Function 

 

Table. 1 
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Context - Aided Estimator Network 

 

Fig. 2 

   The Context-Aided Estimator Network is the centerpiece of this paper. In a higher level, 

CENet predicts a context vector Zt, that intends to represent the terrain properties, and the 

body linear velocity Vt, which in turn helps to get a better understanding of the 

proprioceptive inputs. The latent vector Zt, is used to estimate Vt as well as to predict Ot+1. 

CENet architecture can be inferred from Fig. 3 which depicts an auto-encoder architecture. 

The authors use a β- variational auto-encoder (β-VAE) as the auto- encoder architecture. 

CENet is optimized using a hybrid loss function, defined as follows: 

 

where Lest and LVAE are the body velocity estimation and VAE loss, respectively. The 

VAE network is trained with the standard B-VAE loss, which consists of reconstruction and 

latent losses. The authors employed MSE for the reconstruction loss and Kullback-Leibler 

(KL) divergence  as the latent loss. The VAE loss is formulated as: 

 

where Ot+1 is the reconstructed next observation,   is the posterior distribution of the 

at given  is the context's prior distribution parameterized by a Gaussian 

distribution. 

 

  



 

17 

    2.3.   Walk These Ways: Tuning Robot Control for Generalization with Multiplicity of 

Behavior: 

    "Walk These Ways" proposes a comprehensive framework comprising a low-level 

controller, an interpretable high-level control interface, and MoB techniques. These 

components work synergistically to enable quadruped robots to execute various behaviors 

across different terrains. 

Task and Behavior Sampling 

    In order to learn graceful online transitions between behaviors, the authors resample the 

desired task and behavior within each training episode. To enable the robot to both run and 

spin fast, the authors sample task c = (vcmd,vcmd,ωcmd) using the grid adaptive curriculum 

strategy txyz from [3]. Then, they sampled a target behavior b .  

   First, they sampled (θcmd,θcmd,θcmd) as t 123 one of the symmetric quadrupedal contact 

patterns (pronking, trotting, bounding, or pacing) which are known as more stable and which 

we found a sufficient basis for diverse useful gaits. Then, the remaining command 

parameters (vcmd,fcmd,hcmd,φcmd,hfcmd,scmd) are sampled independently yzzy and 

uniformly. Their ranges are given in Table 6.  

Policy Input 

   The input to the policy is a 30-step history of observations ot−H...t, commands ct−H...t, 

behaviors bt−H...t, previous actions at−H−1...t−1, and timing reference variables tt−H...t.  

   The observation space ot consists of joint positions and velocities qt,q ̇t (measured by joint 

encoders) and the gravity vector in the body frame gt (measured by accelerometer). The 

timing reference variables 

tt =[sin(2πtFR),sin(2πtFL),sin(2πtRR),sin(2πtRL)] 

are computed from the offset timings of each foot:  

[tFR, tFL, tRR, tRL] = [t + θcmd + θcmd, t + θcmd + θcmd, t + θcmd, t + θcmd], 231312  
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where t is a counter variable that advances from 0 to 1 during each gait cycle and FR, FL, 

RR, RL are the four feet. This form is adapted from [8] to express quadrupedal gaits.  

Policy Architecture 

   The policy body is an MLP with hidden layer sizes [512, 256, 128] and ELU activations. 

Besides the above, the policy input also includes estimated domain parameters: the velocity 

of the robot body and the ground friction, which are predicted from the observation history 

using supervised learning in the manner of [7]. The estimator module is an MLP with hidden 

layer sizes [256, 128] and ELU activations. They did not analyze the impact of this 

estimation on performance but found it useful for visualizing deployments.  

Action Space 

   The action at consists of position targets for each of the twelve joints. A zero action 

corresponds to the nominal joint position, qˆ. The position targets are tracked using a 

proportional- derivative controller with kp = 20, kd = 0.5.  

Reward Structure 

 

Table. 2 
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2.4.   Minimizing Energy Consumption Leads to the Emergence of Gaits in Legged Robots 

   In this paper, the authors show that learning to minimize energy consumption plays a key 

role in the emergence of natural locomotion gaits at different speeds in real quadruped 

robots. The same approach leads to unstructured gaits in rough terrains which is consistent 

with the findings in animal motor control.  

Locomotion consumes a significant fraction of an animal’s metabolic energy, suggesting that 

development of different gaits such as walk, trot, gallop, etc. are energy efficient at certain 

range of speeds.  

   It also points out the fact that animals transition between different gaits at different speeds 

in order to minimize their energy consumption. In this work, the authors design an end-to-

end learning framework to show how energy minimization leads to the emergence of 

structured locomotion gait patterns in flat terrains as well as unstructured gaits in complex 

terrains at different commanded speeds.  

   This work leverages the use of the teacher-student training paradigm. The teacher network 

is provided with proprioceptive inputs along with privileged extrinsics information such as 

terrain height, terrain normal, gravity vector, etc at every time step and is trained in 

simulation. The student network has access to only the current proprioceptive inputs and 

history of proprioceptive inputs and predicted action outputs.  

   The goal of the student policy is to mimic the behavior of the teacher policy. More 

importantly, the student policy must be able to infer the privileged information with the 

history of proprioceptive inputs and actions.  

   The authors capitalize on their prior work, "RMA: Rapid Motor Adaptation for Legged 

Robots," to facilitate the adaptation of the policy learned in simulation onto physical 

hardware. This process is executed through the implementation of the student-teacher 

framework. 
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   The main contributions of this paper, as stated by the authors include: 

• Show that minimizing energy consumption plays a key role in the emergence of natural 

loco- motion patterns in both flat as well as complex terrains at different speeds without 

relying on demonstrations or predefined motion heuristics. 

• Show that the emergent gaits at different target speeds correspond to conventional animals 

in the similar Froude number range (sheep/horse) without any sort of pre-programming. 

• Present a distillation-based learning pipeline to obtain velocity-conditioned policy that 

displays smooth gait transition as the target speed is changed. 

• Demonstrate the emergent behaviors, robustness analysis, and gait patterns in simulation as 

well as a real-world budget quadruped robot. 
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               Fig. 3 

 

 

 

State Space 

   The network architectures of the policy network and the value network are symmetric. The 

state is 30 dimensional containing the joint positions (12 values), joint velocities (12 values), 

roll and pitch of the torso and binary foot contact indicators (4 values). The environment 

information as depicted in Fig. 4 includes center of mass position and the payload (3 

dimensions), motor strength (12 dimensions), friction (1 dimension), linear speed in x 

direction vx (1 dimension), linear speed in y direction vy (1 dimension) and yaw speed ωyaw 

(1 dimension), making it a 19-dim vector.  
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Action Space 

   The action space is 12 dimensional corresponding to the target joint position for the 12 

robot joints. The predicted joint angles are with respect to the robot’s initial stand-still 

position.  

 

 

Reward Function 

  

 

 

   The total reward is the summation of three reward terms, namely, forward reward, energy 

reward and survival reward. The forward reward term rewards the agent for walking straight 

at the specified speed, energy reward term penalizes energy consumption and the survival 

reward term is the survival bonus.  

 

    

The authors use the A1 URDF  to simulate the A1 robot in the RaiSim simulator. They 

generate complex terrains using the inbuilt fractal terrain generator for flat and uneven 

surfaces. They claim that tra the policy on a completely flat surface results in unnatural gaits 

and leads to lesser foot clearance from the ground.  

   Hence, they train the policies on simple fractal terrains with varying frequency of terrain 

heights instead of perfectly flat terrain. The policies are tested at 3 different target speeds, 

namely, 0.375 m/s, 0.9 m/s and 1.5 m/s. Walk gait is observed at 0.375 m/s, trot gait emerges 

at 0.9 m/s and gallop gait develops at 1.5 m/s. 
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4. OBJECTIVES 
 

 

   The objectives of this work are as follows: 

• We focus on developing RL-based controllers for quadruped locomotion over different 

types of terrains using multiple gaits such as “trotting”, “hopping”, “bounding”, “pacing”. 

 

• We combine the advantages of RL policies with emergent gaits that learn to traverse over 

uneven terrains and RL policies that enforce Multiplicity of Behaviors such as the type of 

gait, body height commands, step height commands, etc. 

 

• Furthermore, we incorporate ‘Control Barrier Function’ based rewards to make our 

controller less aggressive and more energy efficient. 

 

• Finally, we adopt our  RL policy onto our in-house build quadruped robots – “Mule” and 

“Stoch 3”. 
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4. METHODOLOGY AND WORK PLAN 

 

   We will first discuss about the state space used for training our controller using PPO 

algorithm. Subsequently, we will describe our asymmetric reward function and its role in 

acquiring locomotion behaviour on both flat and non-flat terrain.  

A. State and action space 

   In this work, we utilize different states as inputs to the actor and critic modules. The need 

for asymmetric inputs arises due to the partial observability of the task of quadruped 

locomotion. Properties such as friction and restitution coefficients are not observed directly 

by the controller and hence are not part of the actor's input but are provided as input to the 

critic. The usage of asymmetric PPO is motivated by the performance benefits proven 

empirically in the study [11]. The input passed to the actor contains a history of length 30 

(ot−30:t) following observations (ot) : estimated linear velocity of the base (vt) angular 

velocity of the base (ωt) , gravity vector with respect to the body frame (gt), joint positions 

(qt) , joint velocities (( ̇q)t), timing reference variable (τt) [8]. Further, the following 

commands are passed as part of the input: x-y linear velocity (vcmd,vcmd), yaw x-y rate 

(ωcmd), body height (hcmd), step frequency (fcmd), step height (f hcmd ), stance width 

(scmd ), gait parameters (θcmd, θcmd, θcmd) [8]. 

   The quadruped is controlled by using joint position commands. The RL policy predicts 

perturbation (a_t) about the default joint position (qdef ), and the resultant joint position (at + 

qdef ) is finally sent to the PD controller. While training the quadruped in simulation, we 

used the actuator net [13], but for hardware deployment, we used a PD controller with a 

proportional gain of 20 and a derivative gain of 0.5 for unitree Go1 robot and a proportional 

gain of 220 and derivative gain of 3 for “Mule”. 

 

 

 



 

25 

B. Reward Function 

   Our reward function consists of standard reward terms such as linear and angular velocity 

tracking reward, body height reward, orientation reward, etc. The entire list of reward term 

used in given in Fig [4]. However, our approach differs from the other works in term of the 

usage of asymmetric rewards for training on flat and non-flat terrains.  

 

 

Table. 3 

 

 

 

   The above modified reward encourages the agent to track step height targets relative to a 

delta x, y, z position added relative to its foot location in the direction of motion of the robot. 

Adding this delta x, y, z helps the robot to lift its leg up while in contact with stairs and 

traverse forward over slopes even with lower velocity commands. 
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C. Asymmetric Actor Critic 

 

The observation input provided to the policy and critic networks is delineated in the table 

above. Notably, the critic network is granted access to the full state St, enabling it to 

comprehensively assess the current environment.  

In contrast, the policy network receives a history of observations and estimates privileged 

information through latent representations gleaned from this observation history. This 

nuanced approach ensures that both networks are equipped with pertinent information 

tailored to their respective roles in the decision-making process, thereby enhancing the 

effectiveness and adaptability of the overall system. 

D. Asymmetric Rewards 

In order to encourage our agent to learn behaviours as well as learn to traverse uneven 

terrains, we introduce an asymmetric reward structure. We train our agent in one-stage for 

learning both behaviours as well as locomotion.  

In our experiments, we dedicate x% of the total terrain area as flat surface and (1-x) % for 

uneven surfaces composed of stairs and slopes. x % of the total robots initialised on the flat 

surface receive full scales of auxiliary rewards while the rest of the robot initialised on 

uneven ground receive a reduced scale of auxiliary rewards. 

• Rationale 

By implementing asymmetric rewards, our approach differentiates between robots navigating 

flat surfaces and those traversing uneven terrain. On flat surfaces, the emphasis is placed on 

learning and accurately tracking behavioral commands.  

Conversely, for robots navigating uneven terrain, the priority shifts to effectively tracking 

velocity and successfully traversing the challenging landscape, with less strict adherence to 

auxiliary commands. This tailored approach optimizes performance based on the specific 

demands of each surface type, enhancing overall adaptability and efficiency in locomotion 

tasks. 
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Architecture Diagram 

 
 

 

Fig. 4 

 

  

Fig. 5 
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5. RESULTS AND DISCUSSION 
 

 

        

 

             Table 4.  

 

The above table shows the reward statistics after training for 3500 iterations. 
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    Fig. 6 

 

 

 

    Fig. 7 

 

 

The above figures show quadruped Unitree Go1 climbing stairs and slopes with our RL 

controller. 
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       Fig. 8 

 

Figure. 9 shows our RL controller implemented on our custom built quadruped “Mule” in the 

Isaac Gym simulation engine. 

   The observed overfitting of the Actor and Critic network weights on flat ground, coupled 

with the lack of generalization on uneven terrain, highlights a key challenge in locomotion 

control. The non-rich representations of flat ground observations limit the network's ability 

to adapt to diverse terrains, leading to suboptimal performance in real-world scenarios. 

 

   Training from scratch without asymmetric rewards exacerbates this issue, as evidenced by 

the training collapse observed around 3500 iterations. This underscores the importance of 

incorporating asymmetric rewards to encourage adaptive behavior across different surfaces, 

thereby promoting robustness and generalization in locomotion control. 

 

   The lack of smooth motion on stairs poses another challenge, indicating a dependency on 

the timer variable within the policy network. Our observations suggest that behaviors such as 

gaits, step height, and body height commands are heavily influenced by the timer variable, 

hindering the network's ability to learn skills independently of this dependency. Addressing 

this issue requires further exploration into reducing the network's reliance on the timer 

variable and promoting more diverse and adaptive locomotion strategies. 
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5. CONCLUSIONS AND FUTURE WORK 
 

 

In this report, we have presented a novel approach to quadruped locomotion control that 

addresses the challenge of traversing diverse terrains. By integrating reinforcement learning 

(RL) techniques with proprioceptive observations, our methodology facilitates the 

emergence of adaptive gaits across varied terrain types. We have demonstrated the 

effectiveness of our approach in enabling quadrupeds to navigate uneven landscapes, while 

enforcing diverse behaviors such as gait selection, body height adjustments, and step height 

modulation. 

 

The asymmetric actor-critic framework, coupled with an asymmetric reward 

architecture, enhances the adaptability and robustness of our learning process, simulating 

real-world partial observability scenarios and optimizing locomotion strategies across 

different terrains. Furthermore, the integration of Control Barrier Function-based rewards 

imbues our controller with less aggressive and more energy-efficient locomotion, enhancing 

adaptability and safety in complex environments. 

 

Looking ahead, we envision leveraging diffusion models to further enhance our approach. 

By collecting data from existing techniques such as "Walk These Ways" and "DreamWaQ" 

and interpolating skills between them, diffusion models offer a promising avenue for 

learning and generalizing locomotion skills. This future step holds the potential to further 

improve the adaptability and efficiency of robotic locomotion systems, paving the way for 

agile and versatile quadrupedal locomotion in real-world scenarios. 
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